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Abstract

This paper deals with the existence question in optimal design. We present a gen-
eral variational technique for proving existence, and give several examples concerning
functionals of eigenvalues and of energy type. In particular, we show how the isoperi-
metric problem for the Dirichlet eigenvalues of an elliptic operator of general order fit
into this frame.

1 Introduction

We consider a generic shape optimization problem of the form

min
Ω∈Uad

J(Ω), (1)

where the cost functional Ω → J(Ω) depends on the set Ω, which usually is assumed to be
open or quasi-open. The functional J depends on Ω via the solution of a partial differential
equation defined on Ω, or the spectrum of a certain operator which is defined on Ω. By Uad

we denote the class of admissible sets. The question we deal with is : does problem (1) have
a solution?

The answer depends of course both on how J depends on Ω and on the class of admissible
sets Uad. A collection of results concerning this topic can be found in [3]. The most classical
example of a shape optimization problem which has a solution is the isoperimetric inequality:
find an open set Ω which maximizes the volume among all open sets with fixed perimeter. A
typical example of a shape optimization problem which does not have solution is to minimize
the volume into the same class.

Since the question is not so simple and there is no a standard approach, a general answer
can not be given. Being far from giving an exhaustive tool for the treatment of shape
optimization problems, we just point out the main difficulties of the existence question and
try to give the reader some hints for proving existence for three classes of shape optimization
problems: functionals of eigenvalues, minimization of energies and maximization of energies.
As concrete examples, notice that the maximization of the torsional rigidity is a minimization
of energy, while the minimization of the compliance is a maximization of energy. We do not
discuss here the non existence question, which one should consider with different techniques.
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An artificial way to obtain existence for a given functional J is to diminish the class Uad.
This is usually done by imposing a uniform geometric constraint on the elements of Uad. A
typical example is to work in the class of domains which satisfy a uniform cone condition.
Since these classes are not stable for deformations by smooth vector fields, from a practical
point of view, existence results in these classes may hide what really happens to the shape
functional and do not give real information for the numerical computation. The stability by
smooth fields is necessary when writing the necessary optimality conditions.

A good existence result is a result obtained in a class Uad which is stable for vector field
deformations. In particular, this means that Uad should be large enough and should not
involve any boundary smoothness. This is one reason for which we deal only with weak
solutions (which are naturally defined on non-smooth domains).

We present a unitary frame and give an abstract method to prove existence for problem
(1). In particular we show how to prove existence of an optimal shape for the isoperimetric
problem for the eigenvalues of an elliptic operator of arbitrary order with Dirichlet boundary
conditions (in the Sobolev space Hm

0 (D)). For the Dirichlet-Laplacian (and operators in
divergence form) this was done by Buttazzo and Dal Maso in [10] by using the relaxed form
of the Dirichlet problem and the theory of the Γ-convergence. Without using relaxation, the
same result was proved in [4] into the frame of the weak-γ convergence. In this paper, we give
a simple proof issued from the direct methods of the calculus of variations, which does not
require any knowledge of the relaxed forms or Γ or γ convergences. Neumann eigenvalues
do not fit into our abstract frame, mainly because the lack of collective compactness of
the Sobolev spaces H1(Ω) into L2(RN), for varying Ω. We moreover discuss the shape
optimization problems for the energy of the system. For minimization problems we give
a general existence result (which is valid also for nonlinear pde’s), while for maximization
problems we only underline the main difficulties.

We point out the fact that the answer to the existence question does not depend ”too
much” on the structure of the functional J , but only on its continuity properties on moving
spaces.

2 A few facts about moving spaces

We begin by giving a general definition for the convergence of spaces (see [1] for more details).
Let X be a reflexive Banach space and {Gn}n∈N a sequence of subsets of X. We denote by
w−X, s−X the weak and the strong topology on X. The weak upper and the strong lower
limits in the sense of Kuratowski are defined as follows:

w − lim sup
n→∞

Gn = {u ∈ X : ∃{nk}k,∃unk
∈ Gnk

such that unk

w−X
⇀ u}

s− lim inf
n→∞

Gn = {u ∈ X : ∃un ∈ Gn such that un
s−X−→ u}

Definition 2.1 If {Gn}n∈N are closed subspaces in X, it is said that Gn s−K converges to G
if G ⊆ s−lim infn→∞ Gn. It is said that Gn w−K converges to G if w−lim supn→∞ Gn ⊆ G.
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Note that the s −K and W −K limits of a sequence (Gn)n are not unique. In particular
Gn w −K converges to X and s−K converges to {0}.

If {Gn}n∈N are closed subspaces in X, it is said that Gn converges in the sense of Mosco
to G if Gn converges both in s − K and w − K to G. Since s − lim infn→∞ Gn ⊆ w −
lim supn→∞ Gn, the Mosco limit is unique. Note that in general s − lim infn→∞ Gn ⊆ w −
lim supn→∞ Gn. Therefore, if Gn converges in the sense of Mosco to G, then

s− lim inf
n→∞

Gn = G = w − lim sup
n→∞

Gn.

Definition 2.2 A family of sets G ⊆ P(X) is said to be weak Kuratowski compact (simply
w −K) if for every sequence (Gn)n ⊆ G there exists a subsequence (Gnk

)k and an element
G ∈ G such that

w − lim sup
k→∞

Gnk
⊆ G.

The family is said to be strong Kuratowski compact (simply s − K) if for every sequence
(Gn)n ⊆ G there exists a subsequence (Gnk

)k and an element G ∈ G such that

G ⊆ s− lim inf
k→∞

Gnk
.

3 Functionals depending on eigenvalues

The main situations we have in mind concern the Laplacian with Dirichlet or Neumann
boundary conditions, and the bi-Laplacian with Dirichlet conditions (the clamped plate or
the buckling load). We begin by giving first an abstract frame which can be used to discuss
all these situations (the Neumann b.c. fit only partially into the general theory).

Let V ,H two real Hilbert spaces such that V ⊆ H. On V we have the scalar product (., .)V
and the norm |.|V and on H we have the scalar product (., .)H and the norm |.|H. In order
to cover both the Dirichlet and Neumann Laplacian, we assume for the moment that the
injection mapping V ↪→H is continuous, but not necessarily compact. Let also a : V×V → R
be a continuous, symmetric, coercive bilinear form.

Let now consider a sequence of closed Hilbert subspaces of V , denoted {Vn}n∈N and
{Hn = clHVn}n∈N. We assume that Vn is compactly embedded in Hn. Since by definition Vn

is dense in Hn, the dual space V ′
n can be identified through Hn, Vn

compact
↪→ Hn ↪→ V ′

n. Let an

be the restriction of a to Vn × Vn and consider the associate operator

An : Vn → V ′
n,

defined by a(u, v) =< Anu, v >V ′
n×Vn , for all u, v ∈ Vn. The operator An is also an isomor-

phism from its domain D(An) onto Hn and A−1
n is compact on Hn; A−1

n : Hn → D(An) ⊆
Vn ⊆ Hn, D(An) is dense in Hn. From [16], the spectrum of An consists only on eigenvalues,
which can be computed by using the usual Rayleigh formula.

Let’s denote by λk(Vn) the k-th eigenvalue of the operator An counted with its multiplic-
ity. Then

λk(Vn) = min
S∈Sk(Vn)

max
u∈S\{0}

a(u, u)

|u|2H
,
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where Sk(Vn) is the family of all subspaces of dimension k of Vn.
The following conventions are made. If the number of eigenvalues is finite, we complete

the sequence with λk(Vn) = +∞. If Vn = {0} then ∀k ≥ 1 λk(Vn) = +∞.

Theorem 3.1 Let Vn, V be closed subspaces of V. Assume that Vn
s−V→ V . Then

λk(V ) ≥ lim sup
n→∞

λk(Vn).

Proof Let ε > 0 and S ∈ Sk(V ) such that

λk(V ) + ε ≥ max
u∈S\{0}

a(u, u)

|u|2
.

Let u1, . . . , uk a H-orthonormal basis of S. Let un
1 , . . . , u

n
k be k-sequences given by the

hypothesis V ⊆ s − lim infn→∞ Vn, such that un
i → ui in V-strong. We can assume that

(un
i , u

n
j )H = δij, otherwise we apply a usual orthonormalisation procedure.

Let us denote
Sn = span (un

1 , . . . , u
n
k),

and let un ∈ Sn be such that |un|H = 1 and

max
u∈Sn

a(u, u)

|u|H
=

a(un, un)

|un|H
.

For a subsequence, still denoted using the same index, we have un → u, strongly in V and
H. Then

a(u, u)

|u|H
= lim

n→∞

a(un, un)

|un|H
.

Consequently

λk(V ) + ε ≥ a(u, u)

|u|H
= lim

n→∞

a(un, un)

|un|H
≥ lim sup

n→∞
λk(Vn).

Taking ε → 0, we conclude the proof. 2

Theorem 3.2 Let Vn, V be closed subspaces of V. Assume that Vn
w−V→ V , an moreover

assume that the injection
⋃

n Vn ↪→ H is compact. Then

λk(V ) ≤ lim inf
n→∞

λk(Vn).

Proof Let ε > 0 and Sn ∈ Sk(Vn) such that

λk(Vn) + ε ≥ max
u∈Sn\{0}

a(u, u)

|u|2H
.

Let un ∈ Vn be a maximizer of maxu∈Sn\{0}
a(u,u)

|u|2H
such that |un|2H = 1.

Let un
1 , . . . , u

n
k a H-orthonormal basis of Sn. We can assume that lim infn→∞ λk(Vn) < ∞

and for a subsequence (still denoted using the same index) we have

∀i = 1, . . . , k un
i ⇀ ui weakly in V .
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By the collective compactness assumption
⋃

n Vn ↪→ H, we get (ui, uj)H = δij and w −
lim supn→∞ Sn = span (u1, . . . , uk) := S, which is a space of dimension k.

For every u ∈ S, there exists a sequence unk
∈ Snk

which converges weakly to u in V .
Consequently,

lim inf
n→∞

a(unk
, unk

)

|unk
|H

≥ a(u, u)

|u|H
.

Taking the maximum in the right hand side, we get

lim inf
n→∞

λk(Vn) + ε ≥ max
u∈S

a(u, u)

|u|H
≥ λk(V ).

2

Remark 3.3 If
⋃

n Vn ↪→ H is compact and Vn converges in the sense of Mosco to V , then
from Theorems 3.1 and 3.2 we get that

∀k ≥ 1 λk(Vn) → λk(V ).

In fact, under these hypotheses, even a stronger result can be obtained using the norm
convergence of the resolvent operator (see [17]). Since Hm

0 (D) is compactly embedded in
Hm−1, this result covers the stability of the eigenvalues of the Dirichlet-Laplacian and both
the clamped plate and the buckling load for the bi-Laplacian. In particular, the collective
compactness hypothesis of Theorem 3.2 holds.

It is well known that the spectrum of the Neumann-Laplacian is highly unstable for the
geometric domain variation. We point out the fact that this is due mainly to the collective
compactness condition of Theorem 3.2 which is very difficult to be satisfied, unless the
perturbation of the geometric boundary respects a uniform cone condition, for example.

If the injection
⋃

n Vn ↪→ H is not compact, the convergence of the spectrum does not
hold in general, even though Vn converges in the sense of Mosco to V . We refer the reader
to the classical example of Courant-Hilbert [13].

A set A ⊆ RN is said to be quasi-open (see [3] for details) if for every ε > 0 there exists
an open set Aε such that A ⊆ Aε, and cap (Aε \ A) < ε. A property is said to hold quasi
everywhere (or simply q.e.) if it holds in the complement of a set of zero capacity. A function
u : RN → R is said quasi continuous if for every ε > 0 there exists an open set Aε such that
cap (Aε) < ε and u|RN\Aε

is continuous in RN \Aε. Every function u ∈ H1(RN) has a unique
quasi continuous representative (up to a set of zero capacity).

Let D be a smooth bounded open set (called design region) and H1
0 (D) the usual Sobolev

space. Let us denote

Ac(D) = {H1
0 (A) : A ⊆ D, A quasi-open, |A| ≤ c}.

The Sobolev space H1
0 (A) is seen as closed subspace of H1

0 (D),

H1
0 (A) = {u ∈ H1

0 (D) : u = 0 q.e. on D \ A}.

In the previous relation, u is a quasi continuous representative. It was proved by Hedberg
[18, Theorem 3.1] that this space coincides with the usual Sobolev space as soon as A is
open.

We give first the following.
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Theorem 3.4 The family Ac(D) is compact for the w −K convergence.

Proof The proof is trivial if c ≥ |D|. Indeed, in this case, every sequence H1
0 (An) w −K

converges to H1
0 (D). If c < |D|, the proof is related to the fine behaviour of Sobolev functions.

In [10] the authors use the relaxation of the Dirichlet problem for the Γ-convergence to prove
the assertion. We refer also to [15] for more details concerning this topic.

Let wAn ∈ H1
0 (An) be the function which satisfies −∆wAn = 1 in H1

0 (An) (in the sense
given by the bilinear form a(u, v) =

∫
An
∇u∇vdx). Since D is bounded, the sequence (wAn)n

is bounded in H1
0 (D).

For a subsequence, still denoted using with the same indices, we have wAn

H1
0 (D)
⇀ w. The

convergence being strong in L2(D) and since |{wAn > 0}| ≤ c we get |{w > 0}| ≤ c. We set

A = {w > 0} and prove that H1
0 (An)

w−K−→ H1
0 (A) in H1

0 (D).

Let un ∈ H1
0 (An), such that for a subsequence unk

H1
0 (D)
⇀ u. We have to prove that

u ∈ H1
0 (A). Let fnk

= −∆unk
∈ H−1(D). Then fnk

H−1(D)
⇀ f = −∆u. Consequently, if

vnk
∈ H1

0 (Ank
) satisfies in H1

0 (Ank
) −∆vnk

= f , then un− vnk
⇀ 0 in H1

0 (D), hence vnk
⇀ u

in H1
0 (D). For every ε > 0, we consider fε ∈ L∞(D) such that |fε − f |H−1(D) ≤ ε. If we

denote vε
nk

the solution in H1
0 (Ank

) of −∆vε
nk

= fε, then we get from the maximum principle

0 ≤ |vε
n| ≤ |fε|∞wAn .

Any weak limit of vε
nk

will vanish quasi everywhere on {w = 0} hence it will belong to H1
0 (A).

Making ε → 0, we get that u ∈ H1
0 (A). 2

Let m ∈ N∗ and Hm
0 (D) be the usual Sobolev space on D. For a quasi open set A ⊆ D,

we define by induction the following space (which by abuse of notation is still denoted with
Hm

0 )
Hm

0 (A) = {u ∈ Hm
0 (D) : u ∈ H1

0 (A),∇u ∈ Hm−1
0 (A)}.

Note that for an open set A, the space defined above coincides with the usual Sobolev space,
provided that A satisfies a Keldysh like stability property (see [19]) : u = 0 q.e. on D \ A
implies that u = 0 m-q.e. on D \ A (i.e. in the sense of the m-capacity). Here, we do not
develop this point; we just notice that if A is slightly smooth, this property holds from the
Hedberg theorem.

Let us denote

Am
c (D) = {Hm

0 (A) : A quasi open A ⊆ D, |A| ≤ c}.

Theorem 3.5 The family Am
c (D) is compact for the w −K convergence in Hm

0 (D).

Proof We prove this theorem by induction, namely that Hm
0 (An) w − K converges to

Hm
0 (A), where A = {w > 0} is defined in the proof of Theorem 3.4. Suppose the asser-

tion true up to m − 1 and let us prove it for m. Let (An)n be a sequence of quasi open
sets from which we extract a subsequence (still denoted using the same indices) such that

Hm−1
0 (An)

w−K−→ Hm−1
0 (A) and H1

0 (An)
w−K−→ H1

0 (A).
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From the definition of the Sobolev spaces Hm
0 on quasi open sets, we directly get Hm

0 (An)
w−K−→

Hm
0 (A) in Hm

0 (D).
2

Remark 3.6 Following the same lines, one can prove that for every m ∈ N and 1 < p < +∞,
the family

{Wm,p
0 (A) : A quasi open A ⊆ D, |A| ≤ c}

is w −K compact in Wm,p
0 (D).

In the sequel we give an existence theorem concerning the eigenvalues of general operators
issued from symmetric, continuous and coercive bilinear forms on Hm

0 (D). For example, this
is the case of the m-Laplacian (−∆)m with Dirichlet boundary conditions. This result was
obtained by Buttazzo and Dal Maso in [10]. Their proof relay on the relaxed form and on
the Γ-convergence theory. Here, we give a simple proof issued from the direct methods of
the calculus of variations.

Let a(·, ·) be a symmetric, continuous and coercive bilinear form on Hm
0 (D). For every

quasi open set A ⊆ D, let us denote by λ1(A), . . . , λk(A) the first k eigenvalues of the bilinear
form restricted to Hm

0 (A).

Theorem 3.7 Let Φ : Rk

+ → R be a lower semicontinuous function, increasing in each
variable. Then problem

min{Φ(λ1(A), . . . , λk(A)) : A quasi open A ⊆ D, |A| ≤ c}

has at least one solution.

Proof Let Hm
0 (An) be a minimizing sequence. From the compactness result of Theorem

3.5, there exists a subsequence (still denoted using the same indices) such that Hm
0 (An)

w−k−→
Hm

0 (A), and Hm
0 (A) ∈ Am

c (D).
Following Theorem 3.2 we have that ∀i = 1, . . . , k

λi(A) ≤ lim inf
n→∞

λi(An).

For a subsequence (still denoted using the same indices) there exists x1, · · · , xk ∈ R such
that λi(A) → xi. The lower semicontinuity property of Φ gives that

Φ(x1, · · · , xk) ≤ lim inf
n→∞

Φ(λ1(An), . . . , λk(An)).

The monotonicity of φ in each variable together with the inequalities λi(A) ≤ xi give

Φ(λ1(A), . . . , λk(A)) ≤ lim inf
n→∞

Φ(λ1(An), . . . , λk(An)).

Using the monotonicity of the functional Φ, we conclude the proof by pointing out that
A 6= ∅. 2
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Remark 3.8 Notice that, contrary to the proof of Buttazzo and Dal Maso for elliptic op-
erators in divergence form in the case m = 1, we do not know whether or not x1, · · · , xk

are eigenvalues of a certain operator. In [10], a precise description of the relaxed operator
having x1, . . . , xk as first k eigenvalues was given.

Remark 3.9 Notice also, that Theorem 3.7 does not have a natural extension to Neumann
boundary conditions, i.e. to the Sobolev spaces Hm(A), mainly because the collective com-
pactness required by Theorem 3.2 does not hold. Indeed, the collective compactness hypoth-
esis should be satisfied by the minimizing sequence of spaces, consequently no hypothesis
can be made a priori.

Remark 3.10 In [4], the authors introduced the concept of weak-γ convergence which is
somehow related to the w−K convergence. In order to prove existence results for monotonous
shape functionals, a fundamental property had to be satisfied by the couple γ and weak- γ-
convergences. Note that this property is not required here, and it is not at all clear that such
a property could be verified, since the spaces we deal with (for m ≥ 2) are not reticular. We
also refer to [11] for a review of the role of the monotonicity in shape optimization. In this
paper, existence results are proved in the frame of γ and weak- γ- convergences (which can
not be applied here).

4 Energy type functionals

We give here into an abstract frame, two semicontinuity results of energy type functionals
for the Kuratowski convergences. From a practical point of view, these cases will cover the
shape optimization problems where the functional Ω → J(Ω) is precisely the energy.

Let X be a reflexive Banach space and

E : X 7→ R

be a functional satisfying the following coerciveness property:

∃ α, β > 0, ∀u ∈ X E(u) ≥ α|u|X − β.

Theorem 4.1 If the functional E is weakly lower semicontinuous then the functional

J : P(X) → R

defined by
J(v) = inf

u∈V
E(u)

is w −K l.s.c.

Proof Let (Vn)n, V be elements of P(X) such that

w − lim sup
n→∞

Vn ⊆ V.
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Then, for every ε > 0, we take vn ∈ Vn such that

E(vn) ≤ inf
u∈Vn

E(u) + ε.

If lim infn→∞ J(Vn) < +∞, then the coerciveness of E gives that the sequence (vn)n is
bounded in X. Without loss of generality we can assume that vn ⇀ v in X-weak. The
Kuratowski convergence gives that v ∈ V and the weak-l.s.c. of E gives

E(v) ≤ lim inf
n→∞

E(vn).

Hence
J(V ) ≤ E(v) ≤ lim inf

n→∞
J(Vn) + ε.

Taking ε → 0, we get that J is w-K l.s.c. 2

Theorem 4.2 Let E be a weakly l.s.c., coercive functional on Hm
0 (D). Then the shape

optimization problem
min

Hm
0 (A)∈Am

c (D)
min

u∈Hm
0 (A)

E(u)

has at least one solution.

Proof Apply Theorems 4.1 and 3.5. 2

Following Remark 3.6, this theorem is also valid in Wm,p
0 (D) for 1 < p < +∞.

Example 4.3 Let, for simplicity fix m = 1, and a bounded design region D. The en-
ergy functional associated to the Dirichlet-Laplacian on variable domains, fits under the
hypotheses of the previous theorem. We set X = H1

0 (D). We also set f ∈ L2(D). Then
E := H1

0 (D) → R is defined by

E(u) =
1

2

∫
D

|∇u|2dx−
∫

D

fudx.

Following Theorem 4.1, the mapping Ω → minu∈H1
0 (Ω) E(u) is w −K lower semicontinuous.

Several shape optimization problems, such as the maximization of the torsional rigidity
for example, fit into this frame. Indeed, the problem reads:

max
A⊆D

∫
A

|∇uA|2dx, (2)

where uA is the minimizer in H1
0 (A) of E. Since

∫
A
|∇uA|2dx = −2E(uA), problem (2)

becomes
min
A⊆D

E(uA),

or

min
A⊆D

min
u∈H1

0 (A)

1

2

∫
D

|∇u|2dx−
∫

D

fudx.

Using the w−K compactness of Ac(D) together with the result of Theorem 4.1, we get via
Theorem 4.2 the existence of a solution for the shape optimization problem (2).
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Theorem 4.4 If E is strongly upper semicontinuous on X, then the functional

J : P(X) → R

defined by
J(v) = inf

u∈V
E(u)

is s−K upper semicontinuous.

Proof Let (Vn)n, V be elements of P(X) such that

V ⊆ s− lim inf
n→∞

Vn.

Let ε > 0 ant u ∈ V be such that

E(v) ≤ inf
u∈V

E(u) + ε.

There exists vn ∈ Vn such that vn → v strongly in X. Hence

E(v) ≥ lim sup
n→∞

E(vn),

consequently
J(V ) + ε ≥ lim sup

n→∞
J(Vn).

Making ε → we conclude the proof. 2

Remark 4.5 A similar result as Theorem 4.2 can not be stated for maximization problems,
since there are no suitable s −K compact classes. Moreover, a new difficulty appear when
applying the abstract frame to concrete shape optimization problems, because the space {0}
is an abstract solution which does not correspond to any shape. In Example 4.7 below, we
make a short analysis of the Cantilever problem, and point out the main difficulties.

Example 4.6 The energy functional defined in Example 4.3 satisfies the hypotheses of
Theorem 4.4.

Example 4.7 A significant example of a shape optimization problem where the energy is
to be maximized is the Cantilever problem. The main feature of this problem is that on the
unknown part of the boundary the natural condition is of Neumann type.

The first difficulty is that the Sobolev spaces corresponding to Neumann boundary con-
ditions do not embed naturally into a fixed space. Indeed, for a non-smooth set Ω, there
is no injection of H1(Ω) into H1(D). For this reason, H1(Ω) is seen as a subspace of
L2(D)× L2(D, RN) via the following injection

H1(Ω) 3 u → (1Ωu, 1Ω∇u) ∈ L2(D)× L2(D, RN).

The second difficulty is that compactness results for the Kuratowski convergences are
more difficult to obtain. Up to our knowledge, there is no suitable general compactness
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result for the s − K convergence (this is the one which is important into the Cantilever
problem, for example). In the last section we refer to some compactness results which
can be used to obtain existence for the Cantilever problem in the class of domains with a
prescribed number of holes.

The third difficulty is that from the abstract setting the space {0} could be solution since
is s −K limit of any sequence of spaces. This degenerated situation has to be eliminated,
since there is no shape supporting this space (unless the empty-set)! In practice, this is done
by a careful study of the minimizing sequence (see [5, 12]).

5 Further remarks

A quite large class of functionals involved in the optimal design fit into one of the frames
introduced into the previous sections. The very difficult question does not concern the
structure of the shape functional, but is precisely related to find compact classes for the
Kuratowski convergences. The compactness is exclusively related to the functional spaces!
This fact supports the idea that in a shape optimization problem the existence question is
not so much related to the shape functional and to the PDE, but only to the functional
space which, in our considerations, is of Sobolev type.

There are very few reliable compact classes of domains for the Kuratowski or Mosco
convergences in Sobolev spaces, which are also stable by vector field transformations.

Given l ∈ N∗, for every N ≥ 2 and every p > N − 1, the class

{W 1,p
0 (Ω) : Ω open Ω ⊆ D, ]Ωc ≤ l}

is compact for the Mosco convergence in W 1,p
0 (D). Here D is a bounded open set of RN and

]Ωc denotes the number of the connected components of RN \ Ω. For p = N = 2 this was
proved by Sverak [20] and for arbitrary values of p and N by Bucur and Trebeschi [6].

Concerning the s−K compactness for problems involving Neumann boundary conditions,
we refer to the result of [7] concerning the Dirichlet spaces L1,2(Ω). These are the natural
spaces which replace H1(Ω) for shape functionals without zero order term (see [5], [12]).
This space is embedded into L2(D, RN) by

L1,2(Ω) 3 u → 1Ω∇u ∈ L2(D, RN),

and a somehow similar result to the one of Sverak is proved for the family

{L1,2(Ω) : Ω ⊆ D ⊆ R2, ]Ωc ≤ l}.

We refer to [14] for an extension to nonlinear spaces and to [12] to the elasticity one.
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