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Abstract. The purpose of this survey article is to present a complete, comprehensive,
proof of the Faber-Krahn inequality for the Dirichlet Laplacian from the perspective of free
boundary problems. The proof is of a purely variational nature, proceeding along the fol-
lowing steps: proof of the existence of a domain which minimizes the first eigenvalue among
all domains of prescribed volume, proof of (partial) regularity of the optimal domain and
usage of a reflection argument in order to prove radiality. As a consequence, no rearrange-
ment arguments are used and, although not the simplest of proofs of this statement, it has
the advantage of its adaptability to study the symmetry properties of higher eigenvalues
and also to other isoperimetric inequalities (Faber-Krahn or Saint-Venant) involving Robin
boundary conditions.

1. Introduction

It was conjectured by Rayleigh in 1877 that among all fixed membranes with a given
area, the ball would minimize the first eigenvalue [23]. This assertion was proved by Faber
and Krahn in the nineteen twenties using a rearrangement technique, and since then several
proofs have appeared in the literature.

The purpose of this survey article is to give a comprehensive proof of the Rayleigh–Faber–
Krahn inequality in the context of free boundary problems. It may be argued that, in spite of
the fact that this is a basic result in the theory, no more proofs of this statement are needed,
particularly if they are not simpler than other existing proofs. However, it is our belief that
because the proof we propose here is somehow of a different nature, has applications to other
problems, and follows a natural sequence of intuitive (but mathematically not easy) steps, it
deserves some attention. These steps are the following: existence of an optimal shape, proof
of its (partial) regularity, and use of its optimality in order to conclude that the optimizer
must be radially symmetric.

One has in mind the incomplete proof of the isoperimetic inequality by Steiner in 1836
(see [25] and the survey article [4]). Steiner proved (in two dimensions of the space) that
if a smooth domain is not the ball, then there must exist another domain with the same
area but lower perimeter. Of course, the missing step is precisely the proof of the existence
of a sufficiently smooth set which minimizes the perimeter among all domains of fixed area!
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Moreover, existence only is not enough, since in order to use his argument, Steiner implicitly
needed some smoothness. This proof became complete only in 1957, when De Giorgi proved
that the Steiner argument could be carried out in the class where existence holds, precisely
the sets which have a finite perimeter defined using functions of bounded variation (see [15]).
We also refer the reader to the open problem on the isoperimetric inequality for the buckling
load of a clamped plate, where the same couple of questions remain unsolved. Willms and
Weinberger (see [17, Theorem 11.3.7]) noticed that if a smooth, simply connected set would
minimise the buckling load among all domains with fixed area (in two dimensions of the
space), then necessarily the minimizer is the ball.

In the proof we give of the Faber–Krahn inequality, we use only variational arguments
developed in the context of free boundary problems (see for instance [1, 6, 26]). Our purpose
is to present the basic tools which allow to complete the sequence : existence-regularity-
radiality and give the lecturer the fundamental ideas hidden behind this scheme. This
approach has the advantage to be adaptable to other isoperimetric inequalities where re-
arrangement or mass transport techniques fail. We have in mind isoperimetric inequalities
involving Robin boundary conditions, as for example the minimization of the first Robin
eigenvalue or the maximization of the Robin torsional rigidity among domains of fixed vol-
ume [9, 10]. In the Robin case, the techniques to prove existence-regularity-radiality steps
are definitely more involved and require finer analysis arguments on special functions with
bounded variations, developed in the framework of free discontinuity problems.

Let Ω ⊆ RN be an open (or quasi-open) set of finite measure, but otherwise with no
assumptions either on smoothness or on boundedness. Thanks to the compact embedding
H1

0 (Ω) ↪→ L2(Ω), the spectrum of Dirichlet-Laplacian on Ω is discrete and consists on a
sequence of eigenvalues which can be ordered (counting multiplicities) as

0 < λ1(Ω) ≤ λ2(Ω) ≤ .. ≤ λk(Ω) ≤ ..→ +∞.

If Ω is open, H1
0 (Ω) is the classical Sobolev space consisting on the completion of C∞0 (Ω)

for the L2-norm of the gradients. If Ω is a quasi-open set, we refer the reader to the next
section for some precisions.

The Faber–Krahn inequality asserts that

λ1(Ω) ≥ λ1(B),

where B is the ball having the same measure as Ω. Equality holds if and only if Ω is a ball
(up to a negligible set of points, which may be expressed in terms of capacity).

Roughly speaking, the proof will be split into the following four steps:

Step 1. Prove that there exists a domain Ω∗ which minimizes the first Dirichlet eigenvalue
among all domains of fixed volume, i.e.

∃Ω∗ ⊆ RN , |Ω∗| = m, ∀Ω ⊆ RN , |Ω| = m λ1(Ω∗) ≤ λ1(Ω).

At this first step, the existence result is carried in the family of quasi-open sets.
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Step 2. Prove that the set Ω∗ is open and connected. This result can be seen, by itself, as
a first regularity result. No smoothness of the boundary is required by the next steps.

Step 3. Use a reflection argument in order to deduce that Ω∗ is radially symmetric, hence
it is one annulus.

Step 4. Prove that among all annuli of prescribed volume, the ball gives the lowest first
eigenvalue.

It is clear that the proof of the Faber–Krahn inequality we propose in this note is not
simple. The proof of Steps 1 and 2 requires some techniques developed in the context of
free boundary problems, that we intend to present in a simplified way. Step 3 is done using
an idea that may be traced to Steiner’s original manuscript [25, 4] and which has also been
used in the context of the minimization of integral functionals in H1-Sobolev spaces [20, 21].
We show in detail how this can be adapted to shape optimization in a functional context.
Step 4 consists in a one dimensional analysis argument for which a precise computation can
be carried out.

We note that if in Step 2 one is able to prove the smoothness of the boundary of ∂Ω∗, by
the Hadamard argument relying on the vanishing of the shape derivative, one can extract an
overdetermined boundary condition. Precisely, one would get that |∇u∗| is constant on ∂Ω∗

and come to a Serrin problem which could be solved by moving plane techniques (see the
pioneering paper [24]). Nevertheless, proving the smoothness of ∂Ω∗ requires definitely more
involved regularity techniques, as references [1, 12, 26] show. Proving only the openness of
Ω∗ is quite elementary, as shown in the sequel (see [26, 12] for a complete analysis of the
regularity question).

In the last section of the paper we discuss briefly the problem of minimizing the k-th
eigenvalue of the Dirichlet Laplacian among all quasi-open sets of prescribed measure. We
present some new results where, in particular, we focus on the symmetry of a minimizer of
the k-th eigenvalue and show how our arguments may also be used there. We point out that
although one might expect minimisers of this type of spectral problems to always have some
symmetry, say at least for the reflection with respect to one hyperplane, recent numerical
evidence on this problem has raised the issue of whether or not this is actually true [2].
More precisely, the planar domain found (numerically) in that paper which minimises the
thirteenth Dirichlet eigenvalue of the Laplace operator does not have any such symmetry
and, furthermore, if a restriction is imposed enforcing that the optimiser does have some
symmetry, namely invariance under reflection with respect to an axis, the resulting value
of the optimal eigenvalue is worse than the unrestricted case. Although a proof of such a
statement, if true, is likely to be quite elusive, there has been some independent numerical
confirmation of this observation given in [3, 5]. In any case, these results do beg the question
as to what is the minimum symmetry which we can guarantee these optimal domains will
have. In this sense, the results presented here are a first step in this direction.
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2. Setting the variational framework

Solving Step 1 requires to set up a very large framework for the existence question. As
one cannot impose a priori constraints on the competing sets, in order to achieve existence
the largest class of admissible shapes should be considered. This is a classical principle in
shape optimization.

The most natural framework where the Dirichlet-Laplacian operator is well defined is the
family of quasi-open sets. More precisely, Ω ⊆ RN is called quasi-open if for all ε > 0 there
exists an open set Uε such that the set Ω ∪ Uε is open, where

cap(Uε) := inf{
∫
RN

|∇u|2 + |u|2dx : u ∈ H1(RN), u ≥ 1 a.e. Uε} < ε.

Roughly speaking, quasi-open sets are precisely the level sets {ũ > 0} of the “most continu-
ous” representatives of Sobolev functions u ∈ H1(RN), i.e. the ones given by

(1) ũ(x) = lim
r→0

∫
Br(x)

u(y)dy

|Br(x)|
.

The limit above exists for all points except a set of capacity zero.
If Ω is a quasi-open set, then the Sobolev space H1

0 (Ω) associated to the quasi-open set Ω
is defined as a subspace of H1(RN), by

H1
0 (Ω) =

⋂
ε>0

H1
0 (Ω ∪ Uε).

If Ω is a quasi-open set of finite measure, the spectrum of the Dirichlet-Laplacian on Ω is
defined in the same way as for open sets, being the inverse of the spectrum of the compact,
positive, self-adjoint resolvent operator RΩ : L2(Ω) → L2(Ω), RΩf = u, where u ∈ H1

0 (Ω)
satisfies

(2) ∀ϕ ∈ H1
0 (Ω)

∫
Ω

∇u∇ϕdx =

∫
Ω

fϕdx.

In particular

λ1(Ω) := min
u∈H1

0 (Ω)

∫
Ω

|∇u|2dx∫
Ω

|u|2dx
.

The minimizing function solves the equation{
−∆u = λ1(Ω)u in Ω

u = 0 ∂Ω

in the weak sense (2). Clearly, if Ω is open we find the classical definition of the first
eigenvalue.
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The following inequality, which holds for every quasi-open set of finite measure (see for
instance [14, Example 2.1.8]), will be useful for the local study of the optimal sets

‖u‖∞ ≤ CNλ1(Ω)
N
4 ‖u‖L2 .

The problem we intend to solve is the following: given m > 0, prove that the unique
solution of

(3) min{λ1(Ω) : Ω ⊆ RN quasi-open, |Ω| = m}

is the ball. Uniqueness is understood up to a set of zero capacity, which is precisely the size
of a set for which one cannot distinguish the “precise” values of a Sobolev function.

Since for every t > 0, one has λ1(tΩ) = 1
t2
λ1(Ω), there exists C > 0 such that problem (3)

is equivalent to

(4) min{λ1(Ω) + C|Ω| : Ω ⊆ RN quasi-open}.

Indeed, let us denote

α(m) = inf{λ1(Ω) : Ω ⊆ RN quasi-open, |Ω| = m}.

From the Sobolev inequality, we know that α(m) is strictly positive. Indeed, we have∫
RN

|∇u2|dx ≥ CN

(∫
RN

|u|
2N
N−1

)N−1
N
,

and so from Cauchy-Schwarz on the left hand side and Hölder on the righ hand side

2‖u‖L2(RN )‖∇u‖L2(RN ) ≥ CN‖u‖2
L2(RN )

1

|Ω| 1N
,

which gives that

λ1(Ω) ≥ C2
N

|Ω| 2N
.

Moreover,

(5) α(tNm) = t−2α(m).

On the other hand, for every C, the minimizer Ω in (4) satisifies 2λ1(Ω) = CN |Ω|, as a
consequence of the fact that the function t 7→ λ1(tΩ) + C|tΩ| attains its minimum at t = 1.
Consequently, 2α(m) = CNm, and so problems (3) and (4) are equivalent, as soon as

(6) m =
(2α(1)

CN

) N
N+2

.
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3. Proof of the Faber-Krahn inequality

Proposition 3.1 (Step 1). Problem (3) has a solution, i.e. there exists a quasi-open set Ω∗

such that |Ω∗| = m such that for every quasi-open set Ω ⊆ RN , |Ω| = m we have

λ1(Ω∗) ≤ λ1(Ω).

Proof. The idea is very simple and is based on the concentration-compactness principle of
P.L. Lions [19]. Assume that (Ωn)n is a minimizing sequence and let us denote (un)n a
sequence of L2-normalized, non negative, associated first eigenfunctions. Then the sequence
(un)n ⊆ H1(RN) is bounded. Since H1(RN) is not compactly embedded in L2(RN), for a
subsequence (still denoted using the same index) one of the three possibilities below occurs:

i) compactness: ∃yn ∈ RN such that un(· + yn) −→ u strongly in L2(Rn) and weakly in
H1(RN).

ii) dichotomy: there exists α ∈ (0, 1) and two sequences {u1
n}, {u2

n} ∈ H1(RN), suppu1
n ∪

suppu2
n ⊆ suppun, such that

‖un − u1
n − u2

n‖L2(RN ) → 0 ,∫
RN

|u1
n|2dx→ α

∫
RN

|u2
n|2dx→ 1− α ,

dist(suppu1
n, suppu2

n)→ +∞ ,

and

(7) lim inf
n→∞

∫
RN

|∇un|2 − |∇u1
n|2 − |∇u2

n|2dx ≥ 0 .

iii) vanishing: for every 0 < R <∞

lim
n→+∞

sup
y∈RN

∫
B(y,R)

u2
ndx = 0 .

Situations ii) and iii) cannot occur to a minimizing sequence.
Indeed, situation ii) leads to searching the minimizer in a class of domains of measure

strictly lower than m. First, we notice that the measures of the sets {u1
n > 0}, {u2

n > 0} can
not vanish as n → +∞. One of the two sequences ({u1

n > 0})n, ({u2
n > 0})n has also to be

minimizing for problem (3), in view of the algebraic inequality

(8)
a+ b

c+ d
≥ min

{a
c
,
b

d

}
,

for positive numbers a, b, c, d. This allows to select (for a suitable subsequence, still denoted
with the same index) either ({u1

n > 0})n or ({u2
n > 0})n as minimizing sequence of measure

not larger than m− ε, for some ε > 0, in contradiction to the strict monotonicity (5).
Situation iii) can be excluded by an argument due to Lieb [18] which asserts that if

iii) occurs then λ1(Ωn) → +∞, in contradiction with the choice of a minimizing sequence
(seealso [11]). For the sake of the clearness, we shall provide a short argument to prove this
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fact. Without restricting the generality, we can assume that λ1(Ωn) ≤M1, for some M1 > 0
independent on n. As un ≥ 0, we get

−∆un ≤ λ1(Ωn)un in D′(RN),

and so

−∆un ≤ Cnλ1(Ωn)
N
4

+1 ≤M2.

This implies that for every x0 ∈ RN , the function

un +M2
|x− x0|2

2N

is subharmonic in RN . By direct computation we get that for every ball Bx(r)

un(x) ≤

∫
Bx(r)

udx

|Bx(r)|
+
M2r

2

2N
.

Choosing first r such that M2r2

2N
= 1

3
√
m

, and than n large enough such that for every x ∈ RN∫
Bx(r)

udx

|Bx(r)|
≤ 1

3
√
m
,

we get that

∫
Ωn

u2
ndx ≤

4

9
, in contradiction with the L2-normalization of un.

Only situation i) can occur and this leads to the existence of an optimal domain which
is a quasi-open set. Indeed, we consider the set Ω := {u > 0}. Then, if we choose the
representative defined by (1), the set Ω is quasi-open and has a measure less than or equal
to m. This latter assertion is a consequence of the strong L2 convergence of un which has as
a consequence that (at least for a subsequence) 1Ω(x) ≤ lim infn→+∞ 1Ωn(x) a.e. x ∈ RN .

Moreover, we have

λ1(Ω) ≤

∫
Ω

|∇u|2dx∫
Ω

|u|2dx
≤ lim inf

n→∞

∫
Ω

|∇un|2dx∫
Ω

|un|2dx
= lim inf

n→∞
λ1(Ωn).

If necessary, taking a suitable dilation Ω∗ = tΩ, for some t ≥ 1 such that |Ω∗| = m and using
the rescaling properties of λ1, we conclude that Ω∗ is a minimizing domain. �

The proof of existence of a solution can be repeated in the same way for problem (4), the
relationship between the minimizers of (3) and (4) being given by (6).

Proposition 3.2 (Step 2). The optimal set Ω∗ is open and connected.
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Proof. Assuming one knows that Ω∗ is open, the proof of the connectedness is immediate.
Indeed, assume Ω∗ = Ω1 ∪ Ω2 with Ω1,Ω2 open, disjoint and non-empty. Then λ1(Ω∗) is
either equal to λ1(Ω1) or to λ1(Ω2), hence one could find a set, say Ω1, with the first Dirichlet
eigenvalue equal to λ1(Ω∗) but with measure strictly less than m. This is in contradiction
to the strict monotonicity (5).

The proof of the openness has a technical issue and is using a local perturbation argument
developed by Alt and Caffarelli in the context of free boundary problems [1, Lemma 3.2].
The idea is to prove that u∗ is at least continuous, so that Ω∗ = {u∗ > 0} is an open set. We
refer the reader to [26, Theorem 3.2] and [12, Proposition 1.1] for a complete description of
the method below.

Let R > 0 and x0 ∈ RN . We introduce the harmonic extension of u∗ in BR(x0), by

ũ(x) = u∗(x) in Ω \BR(x0),

∆ũ(x) = 0 in BR(x0).

In view of (4), we have

λ1(Ω∗) + C|Ω∗| ≤
∫
|∇ũ|2dx∫
|ũ|2dx

+ C|{ũ > 0}|,

or ∫
Ω∗
|∇u∗|2dx ≤

∫
Ω∗\BR(x0)

|∇u|2dx+
∫
BR(x0)

|∇ũ|2dx
1 +

∫
BR(x0)

(|ũ|2 − |u∗|2)dx
+ C|BR(x0) \ Ω∗|.

From the L∞ bound of the eigenfunction, we get |
∫
BR(x0)

(|ũ|2 − |u∗|2)dx| ≤ M3R
N so that

after easy computation and for R smaller than a suitable constant independent on the point,
we get ∫

BR(x0)

|∇u∗|2dx ≤
∫
BR(x0)

|∇ũ|2dx+M4R
N .

Since ũ is harmonic and equal to u∗ on ∂BR, we get∫
BR(x0)

|∇u∗|2dx−
∫
BR(x0)

|∇ũ|2dx =

∫
BR(x0)

|∇(u∗ − ũ)|2dx.

Consequently, for every 0 < r < R we have∫
Br(x0)

|∇u∗|2dx ≤
∫
Br(x0)

|∇(u∗ − ũ)|2dx+

∫
Br(x0)

|∇ũ|2dx ≤

≤
∫
BR(x0)

|∇(u∗ − ũ)|2dx+
( r
R

)N ∫
BR(x0)

|∇ũ|2dx.

The last inequality is due to the fact that |∇ũ|2 is subharmonic in BR(x0), as a consequence
of the harmonicity of ũ in BR(x0).

Finally, ∀x0 ∈ RN , ∀0 < r < R ≤ R0 we have

(9)

∫
Br(x0)

|∇u∗|2dx ≤M4R
N +

( r
R

)N ∫
BR(x0)

|∇u∗|2dx.
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This inequality implies in a classical way that u∗ is Hölder continuous. Indeed, one can prove
in a first step that

(10)

∫
Br(x0)

|∇u∗|2dx ≤M5r
N−1.

The proof of the passage from (9) to (10) is classical, see for instance [16, Lemma 2.1, Chapter
3]. The fact that u∗ is Hölder continuous of order 1

2
in RN is a consequence of the Dirichlet

growth theorem (see [16, Theorem 1.1, Chapter3]). For a detailed proof of all steps, we refer
to [26] and the references therein.

�

Analyzing the optimality of Ω∗ by comparison with the sets Ω∗ \BR(x0), one can deduce
that Ω∗ satsfies an inner density property, so that has to be bounded. As well, by compari-
sion with the set {u∗ > ε}, with vanishing ε, one can find an upper bound of the generalized
perimeter. Further analysis, leads to the smoothness of the boundary. The precise smooth-
ness depends on the dimension, but we do not insist on this point since openness alone is
enough for our purposes.

Proposition 3.3 (Step 3). The optimal set Ω∗ has radial symmetry.

Proof. As mentioned in the Introduction, the idea to prove radial symmetry for minimizers
of integral functionals in H1(RN) has been used before (see, for instance, [20, 21]), while its
usage in a geometrical setting appears in Steiner’s arguments [25, 4]. Roughly speaking, if
Ω∗ is a minimizer then one can cut it by a hyperplane H in two pieces of equal measure. Up
to a translation of Ω∗, we can assume that H is given by the equation x1 = 0. Then both
the left and right parts together with their respective reflections are admissible (they have
the correct measure) and are also minimizers. Indeed, let u be a non-zero first eigenfunction
on Ω∗. We put the indices l, r to the corresponding quantities on the left, right parts of Ω∗,
respectively. We denote Ωl = Ω ∩ {x ∈ RN : x1 ≤ 0}.

Ω
l

Ω r

Ω

Ω

l

l

*

Ω r

Figure 1. A region and one of its symmetrised counterparts with respect to a hyperplane
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Then,

λ1(Ω∗) =

∫
Ω∗

l
|∇ul|2dx+

∫
Ω∗

r
|∇ur|2dx∫

Ω∗
l
u2
l dx+

∫
Ω∗

r
u2
rdx

.

Using the algebraic inequality (8), we get (assuming for instance the left part is minimal)

λ1(Ω∗) ≥

∫
Ω∗

l
|∇ul|2dx∫

Ω∗
l
u2
l dx

.

Defining the reflection transformation R : RN → RN R(x) = (−x1, x2, .., xN), we introduce
the reflected domain

Ωl := Ω∗l ∪RΩ∗l ,

together with the reflected test function

u(x) = ul(x) if x1 ≤ 0 and u(x) = ul(Rx) if x1 ≥ 0.

Then |Ωl| = m, ul ∈ H1
0 (Ωl) (this is immediate using the density of C∞0 -function in H1) and

we get

λ1(Ω∗) ≥

∫
Ω∗

l
|∇ul|2dx∫

Ω∗
l
u2
l dx

=

∫
Ωl |∇u|2dx∫

Ωl |u|2dx
≥ λ(Ωl).

Relying on the minimality of Ω∗ and on the inequalities above, we conclude that Ωl is
also a minimizer and that u is an eigenfunction on Ωl. Finally, this means that ul has two
analytic extensions: one in the open set Ωr which is ur and another one in RΩl which is u.
Using the maximum principle, there cannot be a point of the complement of Ωr where ur is
vanishing which is interior for RΩl, and vice-versa. Finally, this implies that Ωr = RΩl and
so Ω∗ is symmetric with respect to H.

We continue the procedure with the hyperplanes {xi = 0}, for i = 2, . . . , N . At this
point, up to a translation, we know that the optimal domain Ω∗ is symmetric with respect
to all the hyperplanes {xi = 0}, for i = 1, . . . , N . Now, we can continue the procedure with
an arbitrary hyperplane passing thorough the origin (without any translation), since such
a hyperplane divides Ω∗ in two pieces of equal measure. We conclude that Ω∗ has to be
radially symmetric. �

Proposition 3.4 (Step 4). The optimal set Ω∗ is the ball.

Proof. Since the optimal set is connected, using the proposition above, we know it is an
annulus. Precisely, for some t ≥ 0 this annulus can be written

Ω∗ = K(0, t, r(t)) := {x ∈ RN : t < |x| < r(t)},

where ωN−1(rN(t) − tN) = m. In order to prove that the solution of the Faber-Krahn
inequality is the ball, it is enough to study the mapping t 7→ λ1(K(0, t, r(t))) and to prove it
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is increasing. Using the the shape derivative formula for λ1 (and denoting u an L2-normalized
eigenfunction on K(0, t, r(t)), we get

d

dt
λ1(K(0, t, r(t)))) =

∫
∂B(0)t

(∂u
∂n

)2

dHN−1 − tN−1

rN−1(t)

∫
∂B(0)r(t)

(∂u
∂n

)2

dHN−1.

Since u is radially symmetric, proving that d
dt
λ1(K(0, t, r(t)))) > 0 is equivalent to proving

that |u′(t)|2 > |u′(r(t))|2 (in this notation u depends only on the radius).
The equation satisfied by the radial function u is

−u′′(s)− N − 1

s
u′(s) = λ1u(s), on (t, r(t)),

u(t) = u(r(t)) = 0.

Denoting v(s) = |u′(s)|2, we get that

v′(s) = 2u′(s)u′′(s) = −2(N − 1)

s
|u′(s)|2 − 2λ1u

′(s)u(s),

and summing between t and r(t) we get

v(r(t))− v(t) = −2(N − 1)

s

∫ r(t)

t

|u′(s)|2ds < 0.

The last inequality is obvious since u is not constant, hence the mapping t 7→ λ1(K(0, t, r(t)))
is strictly increasing on (0,+∞). Consequently the ball, corresponding to t = 0, is the global
minimizer. �

4. Further remarks: higher order eigenvalues

For k ≥ 2 one can also consider the isoperimetric problem

(11) min{λk(Ω) : Ω ⊆ RN quasi-open, |Ω| = m}.

When k = 2 the minimiser consists of two equal and disjoint balls of measure m/2, this being
a direct consequence of the inequality for the first eigenvalue and one which was already
considered by Krahn. For k ≥ 3, and apart from numerical results (see, for instance, [2])
only few facts are known:

• A solution to problem (11) exists (let us call it Ω∗k), it is a bounded set and has finite
perimeter (see [6] and [22]).
• There exists an eigefunction u∗k of the the optimal set Ω∗k, corresponding to the k-th

eigenvalue λk(Ω∗k) which is a Lipschitz function (see [8]). Note that this information
does not imply that the optimal set Ω∗k is open, because Ω∗k contains both the open
set {u∗k 6= 0} and the nodal set {u∗k = 0}, which has a structure, not yet completely
understood.
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Relying on the reflection argument, one can get some more information on the symmetry
of Ω∗k, depending on the dimension of the space. Roughly speaking, the larger the space
dimension, the more symmetric must the minimizer be.

Assume that u1, .., uk are L2-normalized eigenfunctions corresponding to λ1(Ω∗k), .., λk(Ω∗k)
such that

∀i, j = 1, .., k, i 6= j,

∫
uiujdx = 0,

∫
∇ui∇uj = 0.

Problem (11) can be re-written as

min
|Ω|=m

min
Sk⊂H1

0 (Ω)
max
u∈Sk

∫
Ω
|∇u|2dx∫

Ω
|u|2dx

,

where Sk denotes any subspace of dimension k.
Assume H is a hyperplane splitting Ω∗k into Ωl and Ωr such that

|Ωl| = |Ωr|,

∀i, j = 1, .., k, i 6= j,

∫
Ωl

uiujdx = 0,

∀i, j = 1, .., k, i 6= j,

∫
Ωl

∇ui∇ujdx = 0,

∀i = 1, .., k − 1,

∫
Ωl |∇ui|2dx∫

Ωl |ui|2dx
= λj(Ω

∗
k).

Notice that the number of constraints equals k2.
Assuming that ∫

Ωl |∇uk|2dx∫
Ωl |uk|2dx

≤
∫

Ωr |∇uk|2dx∫
Ωr |uk|2dx

,

and reflecting Ωl together with the functions u1|Ωl , .., uk|Ωl , we get

λk(Ωl ∪RΩl) ≤ max{λk−1(Ω∗k),

∫
Ωl |∇uk|2dx∫

Ωl |uk|2dx
} ≤ λk(Ω∗k).

Consequently, the set Ωl ∪RΩl is also a minimizer and is symmetric with respect to H.
If Ω∗k were open, then we could conclude that 1Ω∗

k
= 1Ωl∪RΩl . Following the same arguments

as [21, Theorem 2], we would get that the set Ω∗k would be symmetric with respect to an
affine subspace of dimension k2 − 1. As Ω∗k is not known to be open, we can only assert the
existence of a minimizer which has N − (k2 − 1) hyperplanes of symmetry. In either case,
we see that it is only for k equal to one that full symmetry may be obtained in this way.

Remark 4.1. Similar questions can be raised for more general functions of eigenvalues. Let
F : Rk → R be a lower semicontinuous function, non decreasing in each variable. Then, the
following problem

(12) min{F (λ1(Ω), . . . , λk(Ω)) : Ω ⊆ RN quasi-open, |Ω| = m}.
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has a solution. If moreover F is strictly increasing in at least one variable, then any optimal
set has to be bounded with finite perimeter. We refer the reader to [13, 6, 22, 7]. A key
argument is contained in the following surgery result, for which we refer the reader to [7].

Surgery result for the spectrum: for every K > 0, there exists D,C > 0 depending only on K
and the dimension N , such that for every open (quasi-open, measurable) set Ω̃ ⊂ RN there
exists an open (quasi-open, measurable, respectively) set Ω satisfying

• the measure of Ω equals the measure of Ω̃,

• diam (Ω) ≤ D|Ω| 1N and Per(Ω) ≤ min{Per(Ω̃), C|Ω|N−1
N },

• if for some k ∈ N it holds λk(Ω̃) ≤ K|Ω̃|− 2
N , then λi(Ω) ≤ λi(Ω̃) for all i = 1, . . . , k.
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