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Abstract. For p > 1, we prove that all the functions of W 2,p
loc (R2) satisfy the Whitney

property, i.e. if u ∈ W 2,p
loc (R2) is such that ∇u = 0 (in the sense of capacity) on a connected

set K ⊆ R2, then u is constant on K.
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1. Introduction

This paper deals with Whitney property for Sobolev functions. In a regular context, a
function u ∈ Ck(RN ), k ≥ 1, is said to have the Whitney property if the following holds: for
every connected set K ⊆ RN such that ∇u(x) = 0 for every x ∈ K, then u is constant on K.

Whitney property is clearly implied by the assumption that the set of critical values of u
(namely the image of critical points) has zero measure. The problem of estimating the M -
dimensional measure of the critical values of a function u ∈ Ck(RN ,RM ) is the main object
of the so called Morse-Sard Theorem: it turns out [19] that if k > max{N −M, 0}, then the
M -dimensional Lebesgue measure of the critical values of u is zero. In the pioneering paper
[21], Whitney constructed a function u ∈ C1(R2,R) which is not constant on a connected set
of critical points. This example can be generalized to a N -dimensional setting proving that
the requirement k > max{N −M, 0} in the Morse-Sard Theorem is sharp.

The problem of weakening the differentiability assumption in the Morse-Sard theorem has
been addressed in several papers: we refer the reader to the articles of Bates [4], [5] and of
Norton [17], where the cases of u ∈ CN−M (RN ,RM ), N > M , with DN−Mu belonging to
Hölder continuous functions or to the Zygmund class are considered.

Morse-Sard Theorem in the context of Sobolev spaces has been studied by De Pascale in
[11] (see also [6] for some related results). He considers functions u ∈ W k,p

loc (RN ,RM ) with
N > M , k = N −M + 1 and p > N : in this setting u has a C1 representative by the Sobolev
Embedding Theorem, so that the set of critical values is classically defined, and he proves
that it has zero M -dimensional measure. In the case M = 1 and N = 2, this result implies
that a function u ∈W 2,p

loc (R2) with p > 2 satisfies the Whitney property.
In this paper we discuss the Whitney property for Sobolev functions u ∈ W 2,p

loc (R2) with
1 < p ≤ 2. This situation is critical for De Pascale [11] and the Morse-Sard theorem has an
open issue (functions are not anymore C1). Nevertheless, these functions admit continuous
representatives, while their gradients, as elements of W 1,p

loc (R2,R2), admit quasicontinuous
representatives which are well defined up to sets with cp-capacity zero (see Section 2 for the
precise definitions). As a consequence, we consider sets K which are contained in the set of
critical points of u ∈W 2,p

loc (R2), up to a set of zero capacity, i.e. ∇u(x) = 0 for cp-q.e. x ∈ K.
1
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The main result of the paper consists in proving that all the functions of W 2,p
loc (R2) with

1 < p ≤ 2 have the Whitney property in the following sense (see Theorem 4.3): if K ⊆ R2 is a
connected set, and u ∈W 2,p

loc (R2) is such that ∇u = 0 cp-q.e. on K, then u is constant on K.
In the case p = 2 and for compact connected sets K, the result was stated (without proof)
by Sverák in [20]. Our approach is based on methods from potential theory for Sobolev maps
and on a duality argument which is proper of the two dimensional context.

First, we consider the case in which K is bounded and connected, and u ∈W 2,p(R2). Using
capacity properties of connected sets in the plane, and using p-finely continuity properties of
functions in W 1,p (see Lemma 4.1), we prove that it is not restrictive to consider K closed,
i.e. compact. For some bounded open set Ω containing K, we prove that for every function
v ∈W 1,2(Ω \K) we have (see Theorem 4.3 in Section 4)

(1.1)
∫

Ω\K
R∇u · ∇v dx = 0

where R denotes a rotation of 90 degrees counterclockwise. The Whitney’s property follows
since (1.1) turns out to imply (without any restriction for ∇u on K) the fact that u is constant
on K (see Lemma 2.1). Notice that this is certainly the case if ∂K were smooth enough to
perform an integration by parts. In fact, since R∇u is divergence free, the left-hand side of
(1.1) reduces to an integration of the tangential derivative Dτu on ∂Ω∪∂K against (the trace
of) v, and so Dτu should vanish since v is arbitrary. Here we prove that (1.1) implies that u
is constant of K assuming only connectedness for K, and no other geometric restrictions on
its shape.

Second, the case of an arbitrary connected set K is obtained by means of a slicing argument
in polar coordinates, and employing classical Sard’s theorem for the periodic one dimensional
slicings in association with the first step. We emphasize at this point that the passage from
bounded to unbounded sets K is not of topological nature, and we give an example of a
continuous function which is constant on all bounded connected subsets of an unbounded
connected set K, but which is not constant on the set K.

The paper is organized as follows. In Section 2 we recall some basic facts concerning
capacity for Sobolev spaces and some results employed in the proofs of the main theorems.
In Section 3 we derive some properties of connected sets in relation with capacity which are
essential in the proofs of the main results contained in Section 4.

2. Notation and Preliminaries

In this section we introduce the basic notation and recall some notions employed in the
rest of the paper, which we give in a general N-dimensional setting even if our main result is
two dimensional.

If Ω ⊆ RN is open and 1 ≤ p ≤ +∞, we denote by Lp(Ω) the usual space of p-summable
functions on Ω with norm indicated by ‖ · ‖p. W 1,p(Ω) will denote the Sobolev space of
functions in Lp(Ω) whose gradient in the sense of distributions belongs to Lp(Ω,RN ), and we
denote by W 1,p

0 (Ω) the closure in W 1,p(Ω) of smooth functions with compact support in Ω.
With W 1,p

loc (RN ) we denote the space of function whose restriction to every relatively compact
open set Ω ⊆ RN belongs to W 1,p(Ω).

If E ⊆ RN , we denote by Ec its complementary set, and by |E| its N -dimensional Lebesgue
measure. For x ∈ RN and r > 0 we denote with Bx,r the open ball with center x and radius
r. Finally, by a curve γ connecting two points x, ξ ∈ RN we mean a continuous function
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γ : [a, b] → RN such that γ(a) = x and γ(b) = ξ: we will denote by γ[x,ξ] the compact and
connected image γ([a, b]).

Capacity. For convenience, we recall the definition of cp-capacity we use in the estimates of
the Wiener criterion but we refer the reader to [15] for details concerning capacity, quasi and
fine continuity. Let Ω be a bounded open set and K a compact subset of Ω. We set

(2.1) cp(K,Ω) := inf
{∫

RN

|∇ϕ|p + |ϕ|pdx : ϕ ∈ C∞c (Ω), ϕ ≥ 1 on K
}
,

and extend this definition to open and arbitrary sets by interior and exterior approximation,
respectively. Properties holding quasi-everywhere (written cp-q.e.) are properties which hold
in the complement of a set of zero capacity (recall that if E ⊆ Ω∩Ω′, we have cp(E,Ω) = 0 if
and only if cp(E,Ω′) = 0, so that the notion of set of zero capacity is independent of Ω, and
we can write simply cp(E) = 0).

Throughout the paper, we will identify a Sobolev function with its quasicontinuous repre-
sentative. Notice that for p > N , the continuous representative of u (which exists by Sobolev
Embedding Theorem) is precisely the quasicontinuous representative.

A representation result. We will use often the following representation result: for the
proof we refer to [10, Lemma 3.6] or to [13, Lemma 3.4].

Lemma 2.1. Let Ω ⊆ R2 be open and bounded, and let q ≥ 2. Let ψ ∈ Lq(Ω,R2) be such
that ∫

Ω
ψ · ∇u dx = 0 for every u ∈W 1,2(Ω).

Then there exists φ ∈ W 1,q(R2) constant on the connected components of Ωc (in the case
q = 2 constant c2-quasi everywhere) and such that

∇φ = Rψ in Ω,

where R(a, b) := (−b, a) denotes a rotation of 90 degrees counterclockwise.

3. Connected sets and capacity

In this section we briefly justify that a connected set K in RN is ”large” in the sense of
cp-capacity, i.e., if diamK > 0, x ∈ K and 0 < r < 1

2diamK we have

(3.1)
cp

(
K ∩Bx,r, Bx,2r

)
cp

(
Bx,r, Bx,2r

) ≥
cp

(
[0, 1]× {0}N−1, B0,2

)
cp

(
B0,1, B0,2

) .

The previous inequality was obtained in [8] in the case N = 2 and K compact, and extended
in [9, Lemma 5.2] for arbitrary N . In this section we justify (3.1) for sets K which are only
connected. We use the following inequality (see [9]) about capacity of curves. Let us consider
a curve γ[x,ξ] ⊆ Bx,r in RN with extremes x and ξ, such that ξ ∈ ∂Bx,r. Then

(3.2) cp
(
γ[x,ξ], Bx,2r

)
≥ cp

(
[x, ξ], Bx,2r

)
where [x, ξ] denotes the segment with extremes x and ξ. The proof of this result relies on the
Steiner symmetrization (see [7]).

Proposition 3.1. Let K ⊂ RN be a connected set with diamK > 0. Then for all x ∈ K and
0 < r < 1

2diamK inequality (3.1) holds true.
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Proof. Let x ∈ K. We have to evaluate cp(K ∩ Bx,r, Bx,2r). Recall that the capacity of
K ∩Bx,r is the infimum of the capacity of all open sets in Bx,2r which contain K ∩Bx,r. Let
U ⊆ Bx,2r be such an open set, and let U1 be the connected component of U containing x.
We claim that

(3.3) U1 ∩ ∂Bx,r 6= ∅.
In fact by contradiction, since x ∈ U1 and U1 is connected, we get U1 ⊆ Bx,r. As a consequence
we have that (

K \Bx,r

)
∩ ∂U1 = ∅.

Clearly, since U contains K ∩Bx,r and ∂U1 ⊆ ∂U we have(
K ∩Bx,r

)
∩ ∂U1 = ∅,

so that we can write
K = (K ∩ U1) ∪ (K \ U1)

which is against the fact that K is connected.
Taking into account (3.3), we can find ξr ∈ U1 with |ξr − x| = r. Since U1 is arcwise

connected, there exists a continuous curve γ[x,ξr] contained in U1 and joining x and ξr. By
Lemma (3.2) we deduce that

cp
(
U ∩Bx,r, Bx,2r

)
≥ cp

(
U1 ∩Bx,r, Bx,2r

)
≥ cp

(
γ[x,ξr] ∩Bx,r, Bx,2r

)
≥ cp

(
[x, ξr], Bx,2r

)
,

where [x, ξr] denotes the segment joining x and ξr. Taking the infimum on U , we have the
estimate

cp
(
K ∩Bx,r, Bx,2r

)
≥ cp

(
[x, ξr], Bx,2r

)
.

Since
cp

(
[x, ξr], Bx,2r

)
cp

(
Bx,r, Bx,2r

) =
cp

(
[0, 1]× {0}N−1, B0,2

)
cp

(
B0,1, B0,2

) ,

the proof is concluded. �

¿From Proposition 3.1 we get the Wiener’s type formula (3.4) forK: the limitationsN−1 <
p ≤ N come from the fact that the result is trivial for p > N since points have positive cp-
capacity, while inequality (3.1) (which we use to derive the result) gives no useful informations
for p ≤ N − 1 since segments have zero cp-capacity.

Proposition 3.2. Let K ⊆ RN be a connected set with diamK > 0, x ∈ K and let N − 1 <
p ≤ N . Then

(3.4)
∫ 1

0

(
cp(K ∩Bx,t, Bx,2t)
cp(Bx,t, Bx,2t)

) 1
p−1 dt

t
= +∞.

Proof. Let λ ∈]0, 1[. Then we have the inequalities

cp(K ∩Bx,t, Bx,2t) ≥ cp(K ∩Bx,λt, Bx,2t) ≥ Cλcp(K ∩Bx,λt, Bx,2λt),

where the last one comes by means of a rescaling argument for a suitable constant Cλ > 0.
Taking into account that cp(Bx,λt, Bx,2λt) = cp(Bx,λt, Bx,2λt), the result follows immediately
from (3.1) since the right-end side is strictly positive for N − 1 < p ≤ N . �

The previous proposition can be restated saying that a connected set K in RN is p-thick
or equivalently is not p-thin at x ∈ K for N − 1 < p ≤ N (see [15, Section 6.6 and Section
12.7]).
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4. The main result

In order to prove the Whitney property in the Sobolev space context W 2,p
loc (R2), we need

some preliminary lemmas.

Lemma 4.1. Let K be a connected subset of R2. Let 1 < p ≤ 2 and let v ∈W 1,p
loc (R2) be such

that v = 0 cp-q.e. on K. Then v = 0 cp-q.e. on K.

Proof. We have to show that v(x) = 0 for cp-q.e. x ∈ K \K, where as usual we identify v
with its quasicontinuous representative. Since v is quasicontinuous, by [16, Theorem 1.4] we
have that v is p-finely continuous up to a set of cp-capacity zero. This means that there exists
a set A with cp(A) = 0 such that for every x ∈ R2 \A there exists a set E with

(4.1)
∫ 1

0

(
cp(E ∩Bx,t, Bx,2t)
cp(Bx,t, Bx,2t)

) 1
p−1 dt

t
< +∞

such that (see [14, Theorem 3.17 and Corollary 3.18])

(4.2) v(x) = lim
y→x,y /∈E

v(y).

Let us show that v(x) = 0 for every x ∈ K \ (K ∪A). In view of (4.2), in order to get the
conclusion it suffices to prove that there exists a sequence yn ∈ K \ (E ∪ A) with yn → x,
where E is the exceptional set relative to x. By contradiction, let us assume that there exists
ε > 0 such that

(K \ (E ∪A)) ∩Bx,ε = ∅
so that

(4.3) K ∩Bx,ε ⊆ E ∪A.

SinceK is connected, one can use Proposition 3.2 and since the critical behavior of the integral
is near t = 0, we obtain∫ 1

0

(
cp((K ∩Bx,ε) ∩Bx,t, Bx,2t)

cp(Bx,t, Bx,2t)

) 1
p−1 dt

t
= +∞.

¿From (4.3), recalling that cp(A) = 0, we get that∫ 1

0

(
cp(E ∩Bx,t, Bx,2t)
cp(Bx,t, Bx,2t)

) 1
p−1 dt

t
= +∞,

which means that E does not satisfy (4.1), against the assumption. The proof is thus con-
cluded. �

Notice that Lemma 4.1 has a natural extension in RN provided that N − 1 < p ≤ N .

Lemma 4.2. Let Ω ⊆ R2 be an open bounded connected set with Lipschitz boundary, and let
K ⊆ Ω be compact. Let 1 < p ≤ 2 and let Ψ ∈ W 1,p

0 (Ω \K,R2) with div Ψ = 0. Then for
every v ∈W 1,2(Ω \K) we have

(4.4)
∫

Ω\K
Ψ · ∇v dx = 0.
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Proof. Notice that by Sobolev Embedding Theorem we get that Ψ = (A,B) ∈ Lp∗(Ω\K,R2),
where p∗ is the Sobolev exponent p∗ = 2p

2−p > 2, so that the integral in (4.4) is well defined
(for p = 2, Ψ ∈ Lq(Ω \K,R2) for every q < +∞). In order to prove (4.4), using a truncation
argument it is not restrictive to assume that

v ∈W 1,2(Ω \K) ∩ L∞(Ω \K).

For every n ∈ N let us define

Kn :=
{
x ∈ R2 : d(x,K) ≤ 1

n

}
,

where d(·,K) denotes the distance function fromK. Since Ψ ∈W 1,p
0 (Ω\K,R2) ⊆W 1,p

0 (Ω,R2),
we can find a sequence (Ψn)n∈N such that Ψn ∈ C∞c (Ω \Kn,R2), and

(4.5) Ψn → Ψ strongly in W 1,p(Ω,R2).

By the Sobolev Embedding Theorem we have that Ψn is bounded in Lp∗(Ω,R2) (for p = 2,
Ψn is bounded in Lq(Ω,R2) for every q < +∞), and from (4.5) we get by interpolation that
for every p ≤ r < p∗ (for every p ≤ r < +∞ if p = 2)

(4.6) Ψn → Ψ strongly in Lr(Ω,R2).

Let us fix v ∈W 1,2(Ω\K)∩L∞(Ω\K). We get by (4.6) (choosing 2 < r < p∗) and integrating
by parts ∫

Ω\K
Ψ · ∇v dx = lim

n→+∞

∫
Ω\Kn

Ψn · ∇v dx = lim
n→+∞

∫
Ω\Kn

divΨn · v dx = 0,

since divΨn → divΨ = 0 strongly in Lp(Ω). We conclude that (4.4) holds, so that the proof
is concluded. �

Notice that Lemma 4.2 still holds for p > 2 since W 1,p(Ω \K) is contained in W 1,2(Ω \K).
We are now in a position to prove the main result of the paper.

Theorem 4.3. Let K be a connected subset of R2, and let u ∈ W 2,p
loc (R2) with 1 < p ≤ 2 be

such that ∇u = 0 cp-q.e. on K. Then (the continuous representative of) u is constant on K.

Proof. By Lemma 4.1 we can assume that K is closed. We divide the proof in two steps.

Step 1: K is bounded. If we fix Ω open, bounded and connected set in R2 such that
K ⊂⊂ Ω, upon multiplying u by a smooth cut-off, we may assume without restriction that
u = 0 outside Ω. In particular we have that u ∈W 2,p(Ω).

Let R denote a rotation of 90 degrees counterclockwise. From the assumption we have that

R∇u := (g1, g2) ∈W 1,p(Ω,R2) with R∇u = 0 cp-q.e. on K,

so that by [15, Theorem 4.5] (see also [3])

R∇u ∈W 1,p
0 (Ω \K,R2).

Moreover R∇u has zero divergence. By Lemma 4.2 we get that for every v ∈W 1,2(Ω \K)∫
Ω\K

R∇u · ∇v dx = 0.
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By the Sobolev Embedding Theorem, we have that R∇u ∈ Lp∗(Ω \K,R2) (R∇u ∈ Lq(Ω \
K,R2) for every q < +∞ if p = 2), so that by Lemma 2.1 we get that there exists φ ∈
W 1,p∗(R2) with φ constant on K such that

R∇u = R∇φ on Ω,

so that
u = φ+ constant on Ω.

Since φ is constant on K, the conclusion follows, and Step 1 is concluded.

Step 2: K is unbounded. Let us employ polar coordinates (r, ϑ), i.e., let us identify a
point in R2 with the complex number reiϑ. Since K is unbounded, for every r > 0 we have
that K ∩ ∂Br(0) 6= ∅: let us set

(4.7) Kr := {ϑ ∈ [0, 2π] : reiϑ ∈ K}.

We claim that we can find a sequence rn ↗ +∞ such that

(4.8) u(K) =
⋃
n∈N

u (K ∩ ∂Brn(0)) ,

and such that setting un(ϑ) := u(rneiϑ) we have

(4.9) un ∈W 2,p ([0, 2π])

and

(4.10) u′n(ϑ) = 0 for a.e. ϑ ∈ Krn .

Then the conclusion follows by applying Sard’s theorem to the C1-functions (of one variable)
un which in view of (4.10) implies that L1 (un(Krn)) = 0 for every n ∈ N. In fact by (4.8) we
deduce that

L1(u(K)) ≤
+∞∑
n=0

L1 (un(Krn)) = 0,

and since u(K) is an interval, we get that u(K) = {c} for some c ∈ R. This implies that
u = c on K, and the Whitney property follows.

In order to conclude the proof, we need to prove claims (4.8), (4.9) and (4.10). Let us start
considering (4.8). Let x ∈ K, and let r > 0 be such that x ∈ Br(0). Let us consider for δ > 0

Kδ := {x ∈ R2 : d(x,K) < δ}.

We have that Kδ is open and connected (since K is connected), and since K is unbounded,
there exists ξδ

r ∈ Kδ∩∂Br(0). Let γδ
r be a curve in Kδ connecting x and ξδ

r : up to replacing ξδ
r

with the first point in which γδ
r intersects ∂Br(0), we can assume that γδ

r,[x,ξδ
r ]
⊆ Kδ ∩Br(0).

As δ → 0, we have that up to a subsequence

γδ
r,[x,ξδ

r ] → γr in the Hausdorff metric,

where γr ⊆ K ∩ Br(0) is a compact and connected set such that x, ξr ∈ γr for some ξr ∈
K ∩ ∂Br(0) (for the details concerning the Hausdorff metric we refer the readers to [18]).
Since ∇u = 0 cp-q.e. on γr, by Step 1 we get that u is constant on γr, so that in particular
u(x) = u(ξr). In other words, we have proved that the value of u at x can be recovered from
the values of u on ∂Br(0). Thus we conclude that for every rn ↗ +∞ equality (4.8) holds.
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Claims (4.9) and (4.10) follow by standard theory of slicing properties of Sobolev functions
(see e.g. [12, Section 4.9]): for a.e. r̄ > 0 we have that the function ur̄(ϑ) := u(r̄eiϑ) belongs
to W 2,p([0, 2π]) and is such that for a.e. ϑ ∈ [0, 2π]

(4.11) u′r̄(ϑ) = ∇u(r̄eiϑ) · eϑ
r̄
,

where eϑ := (− sinϑ, cosϑ). Recall that by [12, Section 4.7.2, Theorem 4] we have that for
every E ⊆ R2 and q ≥ 1

cq(E) = 0 =⇒ Hs(E) = 0 for every s > 2− q,

so that in particular for 1 < p ≤ 2

(4.12) cp(E) = 0 =⇒ H1(E) = 0.

Since ∇u = 0 cp-q.e. on K, by (4.11) and (4.12) we have that u′r̄(ϑ) = 0 for a.e. ϑ ∈ Kr̄.
Then claims (4.9) and (4.10) are proved, and the proof is concluded.

�

Remark 4.4. Under the assumption of Theorem 4.3, the result of De Pascale [11] cannot
be applied since 1 < p ≤ 2. Moreover, the proof of our result relies on arguments strictly
connected to the notion of the p-finely topology, which are different from those used in [11].

Remark 4.5. The key point in the proof of Step 2 of Theorem 4.3 is the use of Sard Theorem
for the regular one-dimensional sections of u which gives non trivial informations on u(K) in
view of (4.8). A decomposition with countable many sections like in (4.8) still holds if K is
no more connected but has a countable number of connected components, but it clearly fails
in the general case.

Remark 4.6. Notice that in Step 2 of the proof of Theorem 4.3 we used the fact that
u ∈W 2,p

loc (R2) to carry over a dimensional reduction through slicing in polar coordinates and
use Sard’s theorem on the countable many sections needed (see (4.9) and (4.10)). Thus to get
the conclusion for the case K is unbounded we needed an ”energetic” argument (the Sobolev
regularity) together with the Whitney property for bounded connected sets (which we proved
in Step 1). We remark that we cannot get the conclusion using simply topological arguments,
i.e., using only Step 1 and the continuity of u. In fact we can consider the following example.

Let C := [0, 1] \
⋃∞

n=1En be the usual Cantor set contained in [0, 1], where En is the union
of third-middle intervals, i.e.,

E1 =]1/3, 2/3[, E2 =]1/9, 2/9[∪]7/9, 8/9[ . . .

and so on. Let En :=
⋃kn

k=1 I
n
k with In

k =]an
k , b

n
k [. For every k, let γn

k : In
k → R be a continuous

function such that
lim inf
x→an

k

γn
k (x) = −∞, lim sup

x→an
k

γn
k (x) = +∞,

and
lim inf
x→bn

k

γn
k (x) = −∞, lim sup

x→bn
k

γn
k (x) = +∞.

Let Γn
k ⊆ In

k × R be the image of γn
k . For every n ∈ N let us set

Hn :=
kn⋃

k=1

Γn
k ,
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and let
K := (C × R) ∪

⋃
n∈N

Hn.

We have that K ⊆ R2 is closed and connected. Let us consider u(x, y) = f(x), where f is the
usual Cantor-Vitali function (see e.g. [2, Example 1.67]). The function u (which has bounded
variation (see [2]) but does not belong to W 2,p

loc ) is constant on every bounded and connected
set H ⊆ K, but it is not globally constant on K.

Remark 4.7. We conclude the section noticing at an extension of a result proved by Sverák
[20] (see, Lemma 5.2 and the Remark pag. 548) in the case p = 2: the proof relies on Lemma
4.2.

Let Ω be an open bounded set in R2 such that the number of connected components of
R2 \ Ω is finite. Then for every p ∈]1,+∞[ the space

V (Ω) := {Ψ ∈W 1,p
0 (Ω,R2) : div Ψ = 0}

coincides with the closure in W 1,p
0 (Ω,R2) of

V(Ω) := {Ψ ∈ C∞c (Ω,R2) : div Ψ = 0}.
In order to prove this result, it suffices to check that every Ψ ∈ V (Ω) is a limit in the topology
of W 1,p(Ω,R2) of elements of V(Ω). Let B be an open ball such that Ω ⊆ B, and let us set
K := B \ Ω. We have that K has a finite number of connected components.

Let us consider the case 1 < p < 2. By Lemma 4.2 we get for every v ∈W 1,2(B \K)∫
B\K

Ψ · ∇v dx = 0.

Notice that by Sobolev Embedding Theorem we have Ψ ∈ Lp∗(B \ K,R2), where p∗ is the
Sobolev exponent p∗ = 2p

2−p > 2. By Lemma 2.1 we deduce that there exists φ ∈ W 1,p∗(R2)
constant on the connected components of K such that

(4.13) Ψ = R∇φ on B \K,
where R denotes a rotation of 90 degrees counterclockwise. We get that φ ∈W 2,p(R2). Since
K has a finite number of connected components, we can find a function h ∈ C∞c (B) whose
gradient vanishes in a neighborhood of K and such that it coincides with φ on K. Let us
consider the function θ := φ − h ∈ W 2,p

0 (B \K). Then, by [1, Theorem 9.1.3], there exists
θj ∈ C∞c (B \K) such that

θj → θ strongly in W 2,p
0 (B \K).

Let us define the functions
Ψj = R∇θj +R∇h.

Recalling that B \K = Ω, by construction we have Ψj ∈ C∞c (Ω,R2), div Ψj = 0 and

Ψj → R∇φ = Ψ strongly in W 1,p
0 (Ω,R2),

so that the result follows.
The case p ≥ 2 follows the same lines as the case 1 < p < 2: it suffices to take into account

that by the Sobolev Embedding Theorem Ψ is either an element of every Lq space for every
1 ≤ q < +∞ or a Hölder continuous function so that the representation formula (4.13) with
φ ∈W 2,p(R2) still holds.



10 D. BUCUR, A. GIACOMINI, AND P. TREBESCHI

References

[1] Adams D. R., Hedberg L.I.: Function spaces and potential theory, Grundlehren der Mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences], 314. Springer-Verlag, Berlin, 1996.

[2] Ambrosio L., Fusco N., Pallara D.: Functions of bounded variations and Free Discontinuity Problems.
Clarendon Press, Oxford, 2000.

[3] Bagby T.: Quasi topologies and rational approximation. J. Funct. Anal. 19 (1992), 581-597.
[4] Bates S. M.: On the image size of singular maps. I. Proc. Amer. Math. Soc. 114, 3 (1992), 699–705.
[5] Bates S. M.: On the image size of singular maps. II. Duke Math. J. 68, 3 (1992), 463–476.
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