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Abstract

We discuss some refinements of the classical Prékopa-Leindler inequality, which consist in the
addition of an extra-term depending on a distance modulo translations. Our results hold true
on suitable classes of functions of n variables. They are based upon two different kinds of 1-
dimensional refinements: the former is the one obtained by K.M. Ball and K. Böröczky in [4] and
involves an L1-type distance on log-concave functions, the latter is new and involves the transport
map onto the Lebesgue measure. Starting from each of these 1-dimensional refinements, we
obtain an n-dimensional counterpart by exploiting a generalized version of the Cramér-Wold
Theorem.
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1 Introduction

The classical Prékopa-Leindler inequality is the functional form of the Brunn-Minkowski Theorem

for the volume functional, see [20, 21, 22, 23]. It states that, given f, g ∈ L1(Rn;R+) and λ ∈ (0, 1),

for any measurable function h : Rn → R+ which satisfies

h
(
(1− λ)x+ λy

)
≥ f(x)1−λg(y)λ ∀x, y ∈ Rn , (1.1)

it holds ∫
Rn
h ≥

(∫
Rn
f
)1−λ(∫

Rn
g
)λ

. (1.2)

For further information on this inequality and its many applications in different contexts, we refer

to [3, 6, 7, 9, 17, 24].

If one introduces the Prékopa-Leindler deficit of two given functions f, g ∈ L1(Rn;R+) in proportion

λ by

γλ(f, g) := inf
{ ∫

Rn h( ∫
Rn f

)1−λ( ∫
Rn g

)λ − 1 ; h : Rn → R+ measurable verifying (1.1)
}
, (1.3)

inequality (1.2) can be equivalently reformulated as

γλ(f, g) ≥ 0 . (1.4)
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Notice that, if f, g are Borel functions, then the infimum in (1.3) is attained at

h(z) := sup
(1−λ)x+λy=z

f(x)1−λg(y)λ ,

since such function turns out to be measurable (cf. [22, Theorem 3]). However, in the general case

when f, g are merely measurable, the above defined function h needs not to be itself measurable

(cf. [17, Section 10]). Following [9], one might then write the Prékopa-Leindler deficit in terms of

the (measurable) function

h(z) := esssup
(1−λ)x+λy=z

f(x)1−λg(y)λ ,

but in order to avoid the related technicalities, we prefer to deal with the simpler definition (1.3).

It is known from S. Dubuc [16] that, assuming that the integrals of f and g are equal 1, if (1.2)

holds with equality sign (or equivalently if γλ(f, g) = 0), then f agrees almost everywhere with a

log-concave function, and there exists b ∈ Rn such that

f(x) = g(x+ b) .

The purpose of this paper is to provide some improved versions of (1.4), namely to show that, for

f, g belonging to suitable classes A of L1(Rn;R+), it holds

γλ(f, g) ≥ ψλ(d(f, g)) , (1.5)

where ψλ : R+ → R+ is a suitable continuous increasing function with ψλ(0) = 0, and d some

distance modulo translations on A. By this we mean that d : A×A → R+ is a symmetric function,

satisfying the triangular inequality, and such that

d(f, g) = 0 if and only if f(x) = g(x+ b) for some b ∈ Rn .

The stability of the Prékopa-Leindler inequality has been recently investigated by K.M. Ball and K.

Böröczky [4, 5]. In [4] the authors study the 1-dimensional case, by exploiting the mass transporta-

tion of log-concave probability distributions, combined with some of their fine properties holding

in dimension 1. In particular, their results entail an inequality of the type (1.5) on the class of

compactly supported log-concave probabilities on R, endowed with the following L1-type distance

modulo translations

d(f, g) = inf
b∈R

∫
R
|f(x)− g(x+ b)| dx . (1.6)

Extending this kind of result to higher dimensions is a quite delicate problem. In [5], it is proved

that the 1-dimensional refined inequality obtained in [4] continues to hold on the class of even

log-concave functions on Rn. The restriction to such class of functions is crucial. Indeed, the

underlying idea is applying to their (convex and origin-symmetric) level sets the refined version of

the Brunn-Minkowski inequality recently proved in [15]: it involves a notion of relative asymmetry

for convex bodies which reduces to the Lebesgue measure of their symmetric difference in case they

are origin-symmetric. This is the heuristic reason why, after integration, such approach leads to the

same kind of L1-type distance between the initial functions as in dimension n = 1, namely

d(f, g) = inf
b∈Rn

∫
Rn
|f(x)− g(x+ b)| dx . (1.7)
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To the best of our knowledge, this is the unique known stability result for the Prékopa-Leindler

inequality in dimension higher than 1. The scope of this paper is to achieve some n-dimensional

refinements of the Prékopa-Leindler inequality, whose validity goes out of the class of even functions

for some distance of integral type.

Our approach is based on an improved version of the Cramér-Wold Theorem, allowing translations,

that we set up in Section 2 (see Theorem 2.2). Though the proof of such extension is quite simple,

we believe it may deserve its own interest and have further applications.

Next in Section 3 we use such result to show that an inequality of the kind (1.5) in dimension 1

entails an inequality of the same kind in arbitrary dimension (see Theorem 3.1). We apply this

method by taking as a 1-dimensional distance either the one in (1.6) (see Proposition 3.2), or a

new one which involves the nondecreasing mass transportation map of a given probability onto the

Lebesgue measure on [0, 1] (see Proposition 3.5). We point out that these n-dimensional refinements

hold on different functional classes, which are quite broad (cf. Remarks 3.3 and 3.6). As a drawback,

the distance modulo translation that appears in our refinements is more involved than the one in

(1.7).

Notwithstanding, the possible interest of our refinements is motivated by their applications in the

field of geometric-functional inequalities: as briefly discussed in Section 4, they lead in a natural

way to refinements of different kinds of inequalities, such as Brunn-Minkowski type inequalities for

variational functionals, as well as isoperimetric-like or log-Sobolev type inequalities on the class of

log-concave functions.

2 An improved version of Cramér-Wold Theorem

For every direction ξ ∈ Sn−1 (the unit sphere of Rn), let us decompose Rn as the direct sum of the

hyperplane Hξ through the origin orthogonal to ξ and the linear space spanned by ξ. Thus, for any

x ∈ Rn, we write

x = (x′, tξ) with x′ ∈ Hξ and t ∈ R . (2.1)

Then, for any given function f ∈ L1(Rn;R+), we denote by fξ the function in L1(R;R+) defined by

fξ(t) :=

∫
Hξ

f(x′, tξ) dHn−1(x′) , (2.2)

where Hn−1 denotes the (n−1)-dimensional Hausdorff measure on Hξ. The Cramér-Wold Theorem

[13] states that a Borel probability measure on Rn is uniquely determined by its 1-dimensional

projections. Thus, if f, g are functions in L1(Rn;R+),

∀ξ ∈ Sn−1 , fξ = gξ on R ⇒ f = g on Rn .

Assume now that the ‘slices’ fξ, gξ satisfy a weaker condition, namely they agree up to a translation

depending on the direction ξ. What can be inferred on f and g?

Under the assumption that f and g belong to the following space of integrable functions with finite

first order momentum

L1
m(Rn;R+) :=

{
f ∈ L1(Rn;R+) : xf(x) ∈ L1(Rn;Rn)

}
, (2.3)

the answer is contained in Theorem 2.2 below.
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Remark 2.1. Notice that the finiteness moment condition appearing in (2.3) is obviously satisfied,

for instance, by all functions in L1(Rn;R+) having compact support. We also point out that a

similar condition (actually a much stronger form of it, named Carleman condition, which requires

in particular the finiteness of moments of all order), is needed for the validity of the sharp form of

the Cramér-Wold Theorem proved in [14].

Theorem 2.2. Let f, g ∈ L1
m(Rn;R+) with nonzero integrals and, for any given ξ ∈ Sn−1, let fξ, gξ

be defined as in (2.2). Assume that

∀ξ ∈ Sn−1 , ∃bξ ∈ R : fξ(t) = gξ(t+ bξ) for a.e. t ∈ R . (2.4)

Then, setting

b :=

∫
Rn
[
xg(x)− xf(x)

]
dx∫

Rn g(x) dx
, (2.5)

it holds

bξ = b · ξ ∀ξ ∈ Sn−1 and f(x) = g(x+ b) for a.e. x ∈ Rn .

Proof. Multiplying by t the identity fξ(t) = gξ(t+ bξ) gives∫
Hξ

tf(x′, tξ) dHn−1(x′) =

∫
Hξ

tg(x′, (t+ bξ)ξ) dHn−1(x′) .

By exploiting the assumption that the functions f, g belong to L1
m(Rn;R+) (in particular, the

finiteness of their first order momentum), we can now integrate with respect to t ∈ R. Using the

change of variable s = t+ bξ in the right hand side, we obtain∫
Rn

(x · ξ)f(x) dx =

∫
Rn

(x · ξ)g(x) dx− bξ
∫
Rn
g(x) dx .

This shows that bξ is uniquely determined as the scalar component in direction ξ of the vector

b ∈ Rn defined in (2.5). Notice that the integral of g at the denominator of (2.5) may be as well

replaced by the integral of f , since (2.4) implies in particular
∫
Rn f =

∫
Rn g. Notice also that b does

not depend on the choice of the coordinate system, since neither the barycenters of f and g, nor

their L1-norm depend on it. Now, if we define

τbg(x) := g(x+ b) ∀x ∈ Rn ,

for every ξ ∈ Sn−1 it holds

(τbg)ξ(t) =

∫
Hξ

(τbg)(x′, tξ) dHn−1(x′)

=

∫
Hξ

g(x′ + b′, (t+ bξ)ξ) dHn−1(x′)

=

∫
Hξ

g(x′, (t+ bξ)ξ) dHn−1(x′)

= gξ(t+ bξ) = fξ(t) .

By the Cramér-Wold Theorem, we conclude that f = τbg on Rn.
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As an easy consequence of Theorem 2.2, starting from a distance modulo translations defined

on a given class of functions of one variable, one can construct a distance modulo translations in

n-dimensions. More precisely, the following statement holds, which paves the way to building refine-

ments of the n-dimensional Prékopa-Leindler inequality, starting from 1-dimensional refinements:

Corollary 2.3. Let (A, d) be a subclass of L1(R;R+) endowed with a distance modulo translations,

and let An be the subclass of L1(Rn;R+) defined by

An :=
{
f ∈ L1

m(Rn;R+) : fξ ∈ A ∀ξ ∈ Sn−1
}
. (2.6)

Then

dn(f, g) := sup
ξ∈Sn−1

d(fξ, gξ) (2.7)

is a distance modulo translations on An.

Proof. Clearly, dn is a nonnegative and symmetric function on An. Moreover, it satisfies the

triangular inequality: given functions f, g, h ∈ An, it holds

sup
ξ
d(fξ, gξ) ≤ sup

ξ

(
d(fξ, hξ) + d(hξ, gξ)

)
≤ sup

ξ
d(fξ, hξ) + sup

ξ
d(hξ, gξ) .

Finally, assume that dn(f, g) = 0. By the definition of dn, this implies d(fξ, gξ) = 0 ∀ ξ ∈ Sn−1.

Since by assumption d is a distance modulo translation on A, condition (2.4) is satisfied. Then by

Theorem 2.2 the functions f and g are translates of each other.

3 Refinements of Prékopa-Leindler inequality

By following the proof of the n-dimensional Prékopa-Leindler inequality by induction on n (cf. [18,

Theorem 4.2]), and exploiting Corollary 2.3, we obtain:

Theorem 3.1. Let (A, d) be a subclass of L1(R;R+) endowed with a distance modulo translations,

and let (An, dn) be the corresponding subclass of L1(Rn;R+) as in Corollary 2.3. Assume that, for

some continuous increasing function ψλ : R+ → R+ with ψλ(0) = 0, it holds

γλ(F,G) ≥ ψλ
(
d(F,G)

)
∀F,G ∈ A . (3.1)

Then it holds

γλ(f, g) ≥ ψλ
(
dn(f, g)

)
∀f, g ∈ An . (3.2)

Proof. Let h : Rn → R+ be a measurable function satisfying (1.1), and select an arbitrary direction

ξ ∈ Sn−1; accordingly, we decompose any x ∈ Rn as in (2.1). Then, we fix a, b ∈ R and we set

c := (1− λ)a+ λb. We observe that, by the choice of h and c, the functions

x′ 7→ f(x′, aξ), g(x′, bξ), h(x′, cξ)

satisfy the assumption of the Prékopa-Leindler inequality (namely the inequality (1.1)) on Hξ.

Therefore, if fξ, gξ and hξ are the functions of one real variable defined according to (2.2), it holds

hξ(c) ≥
(
fξ(a)

)1−λ(
gξ(b)

)λ
.
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By the arbitrariness of a and b in R, the definition of c, and assumption (3.1), it follows∫
R
hξ ≥

(∫
R
fξ

)1−λ(∫
R
gξ

)λ(
1 + ψλ

(
d(fξ, gξ)

))
,

that is ∫
Rn
h ≥

(∫
Rn
f
)1−λ(∫

Rn
g
)λ(

1 + ψλ
(
d(fξ, gξ)

))
.

Finally, we pass to the supremum with respect to ξ ∈ Sn−1 at the right hand side. Taking into

account that ψλ is continuous and increasing, (3.2) follows.

The remaining of this section is devoted to exemplify the applications of Theorem 3.1, by taking as

(A, d) two different classes of functions of one variable, endowed with two different kinds of distances

modulo translations. Firstly, we consider the 1-dimensional refinement obtained by K.M. Ball and

K. Böröczky in [4] on the class of log-concave functions and we obtain:

Proposition 3.2. Set

A :=
{
F ∈ L1(R;R+) :

∫
R
F = 1 , F is log-concave

}
, (3.3)

d(F,G) := inf
b∈R

∫
R
|F (x)−G(x+ b)| dx , (3.4)

and define An and dn according to Corollary 2.3. We have:

(i) d and dn are distances modulo translations respectively on A and An;

(ii) inequalities (3.1) and (3.2) hold by taking ψλ as the inverse function on R+ of

ϕλ(t) := c(λ) t1/3| log t|4/3(1 + t) ,

being c = c(λ) a suitable positive constant.

Remark 3.3. As noticed in [4], it is unclear whether the log-concavity assumption appearing in

the class A defined by (3.3) is actually necessary for the validity of (3.1). Let us also point out that

the corresponding class An where (3.2) holds true, turns out to contain all log-concave functions f

in L1(Rn;R+) such that
∫
Rn f = 1 (see Corollary 3.5 in [9] or Theorem 11.2 of the extended version

[18] of the paper [17], which reduce the problem to n = 1, where the assertion is trivial).

Proof. (i) By definition, d is a nonnegative symmetric function on A. Moreover, if d(F,G) = 0,

there exists a sequence {bk} ⊂ R such that

lim
k

∫
R
|F (x)−G(x+ bk)| dx = 0 . (3.5)

We observe that such a sequence {bk} is necessarily bounded. Indeed, if (up to a subsequence) it

holds |bk| → +∞, since G is log-concave and integrable it holds G(x+ bk) → 0 for a.e. x ∈ R, and

by Fatou’s Theorem we get
∫
R|F (x)| = 0, contradiction. Hence (again up to a subsequence), we

have bk → b for some b ∈ R. Taking into account that the functions in A are log-concave, and in

particular continuous on the interior of their support, it holds

lim
k
G(x+ bk) = G(x+ b) for a.e. x ∈ R . (3.6)
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Then, by (3.5), (3.6) and Fatou’s Theorem, we have∫
R
|F (x)−G(x+ b)| dx = 0 ,

whence F and G are translates of each other. Finally, given functions F,G,H ∈ A, for every ε > 0

there exist b1 and b2 such that

d(F,H) ≥
∫
R
|F (x)−H(x+ b1)| dx− ε and d(H,G) ≥

∫
R
|H(x)−G(x+ b2)| dx− ε .

Then

d(F,G) ≤
∫
R
|F (x)−G(x+ b1 + b2)| dx

≤
∫
R
|F (x− b1)−H(x)| dx+

∫
R
|H(x)−G(x+ b2)| dx

≤ d(F,H) + d(H,G) + 2ε ,

and the triangular inequality follows by letting ε tend to zero.

(ii) Inequality (3.1) follows directly from [4, Theorem 1.2] (see also Remarks 1.3 and 1.6 in [4],

and the Remark just after Theorem 1.2 in [5]). Inequality (3.2) is an immediate consequence of

inequality (3.1) and Theorem 3.1.

Remark 3.4. The distance constructed in Proposition 3.2 is clearly weaker than the L1 distance

(1.7). Indeed,

dn(f, g) = sup
ξ∈Sn−1

inf
b∈R

∫
R
|fξ(t)− gξ(t+ b)|dt,

= sup
ξ∈Sn−1

inf
b∈R

∫
R

∣∣∣ ∫
Hξ

f(x′, tξ)− g(x′, (t+ b)ξ) dHn−1(x′)
∣∣∣dt.

Denoting b∗ the minimizer in (1.7), and b′∗, b∗,ξ its projections on Hξ and ξR, respectively, we have

dn(f, g) ≤ sup
ξ∈Sn−1

∫
R

∣∣∣ ∫
Hξ

f(x′, tξ)− g(x′ + b′∗, (t+ b∗ξ)ξ) dHn−1(x′)
∣∣∣dt

≤ sup
ξ∈Sn−1

inf
c∈Rn

∫
Rn
|f(x)− g(x+ c)|dx = inf

c∈Rn

∫
Rn
|f(x)− g(x+ c)|dx.

Next we propose a different kind of 1-dimensional refinement, which involves the transportation

map of an absolutely continuous probability onto the Lebesgue measure on [0, 1].

With any given function F ∈ L1(R;R+) with
∫
R F = 1, we associate the map uF : [0, 1] → R such

that uF (t) is the smallest number satisfying∫ uF (t)

−∞
F (x) dx = t . (3.7)

Below, F (uF ) stands for the composition F ◦ uF , L1 for the Lebesgue measure on R, and AC(0, 1)

for the class of absolutely continuous functions on (0, 1).
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Proposition 3.5. Set

A :=
{
F ∈ L1(R;R+) :

∫
R
F = 1 , uF ∈ AC(0, 1)

}
, (3.8)

d(F,G) := L1
(
{F (uF ) 6= G(uG)}

)
−
∫
{F (uF )<G(uG)}

F (uF )

G(uG)
−
∫
{G(uG)<F (uF )}

G(uG)

F (uF )
, (3.9)

and define An and dn according to Corollary 2.3. We have:

(i) d and dn are distances modulo translations respectively on A and An;

(ii) inequalities (3.1) and (3.2) hold by taking

ψλ(t) := c(λ) t2 ,

being c(λ) a positive constant depending on λ.

Remark 3.6. (i) Removing the condition uF ∈ AC(0, 1) in (3.8), the function d in (3.9) would be

no longer a distance modulo translations. Indeed, for given positive numbers a < b, let

F (x) := χ[0,a]∪[b,b+1−a] and G(x) := χ[0,1] .

It is easy to check that

uF (t) =

{
t if t ∈ [0, a]

t+ b− a if t ∈ (a, 1] ,

which in particular shows that uF /∈ AC(0, 1). Moreover, it holds F (uF ) = G(uG) = 1 on [0, 1], so

that d(F,G) = 0. But clearly F and G do not agree up to a translation of their variable.

(ii) The condition uF ∈ AC(0, 1) in (3.8) is satisfied for instance for all continuous functions F such

that spt(F ) = [a, b] and the set {x ∈ [a, b] : F (x) = 0} is empty or given by a finite number of

points. Indeed in this case the map t 7→
∫ t
a F (s) ds is of class C1 and strictly increasing from [a, b]

onto [0, 1], and uF is precisely its inverse.

Consequently, the corresponding class An where (3.2) holds true, turns out to contain for instance

all continuous functions f ∈ L1(Rn;R+) with
∫
Rn f = 1 such that spt(f) is a compact set and f is

strictly positive on its interior.

(iii) We point out that the class (3.8) contains functions which are not log-concave and hence do

not lie in the class (3.3). For instance, one can check that the function

F (x) := (α+ 1)xαχ[0,1](x)

belongs to the class (3.8) as soon as α > −1, whereas it is log-concave only for α > 0.

Proof of Proposition 3.5. (i) Clearly d is a nonnegative symmetric function on A. Moreover, if

d(F,G) = 0, from the definition of d it follows

F (uF ) = G(uG) a.e. on [0, 1] . (3.10)

Since by differentiating (3.7) one sees that F (uF (t))u′F (t) = 1 a.e. on [0, 1], condition (3.10) implies

u′F (t) = u′G(t) a.e. on [0, 1] . (3.11)
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In turn, since uF and uG are absolutely continuous maps, (3.11) yields the existence of some b ∈ R
such that uF (t) = uG(t)+b, and hence by (3.10) the functions F and G are translates of each other.

In order to check the triangular inequality, it is convenient to rewrite d(F,G) as

d(F,G) =

∫
{F (uF )<G(uG)}

[
1− F (uF )

G(uG)

]
+

∫
{G(uG)<F (uF )}

[
1− G(uG)

F (uF )

]
.

Then, given functions F,G,H ∈ A, we observe that

d(F,G)− d(F,H)− d(H,G) =
3∑
i=1

∫
ωi

Φi +

3∑
i=1

∫
ω̃i

Φ̃i , (3.12)

where

ω1 :=
{
x ∈ R : H(uH) ≤ F (uF ) ≤ G(uG)

}
, Φ1 :=

[
1− F (uF )

G(uG)

]
−
[
1− H(uH)

F (uF )

]
−
[
1− H(uH)

G(uG)

]
ω2 :=

{
x ∈ R : F (uF ) ≤ H(uH) ≤ G(uG)

}
, Φ2 :=

[
1− F (uF )

G(uG)

]
−
[
1− F (uF )

H(uH)

]
−
[
1− H(uH)

G(uG)

]
ω3 :=

{
x ∈ R : F (uF ) ≤ G(uG) ≤ H(uH)

}
, Φ3 :=

[
1− F (uF )

G(uG)

]
−
[
1− F (uF )

H(uH)

]
−
[
1− G(uG)

H(uH)

]
,

and the sets ω̃i and the functions Φ̃i are defined in the analogous way simply exchanging the roles of

F and G. Some straightforward algebraic computations show that for every i = 1, 2, 3, the function

Φi (resp. Φ̃i) is nonpositive on the set ωi (resp ω̃i) and therefore the triangular inequality follows

from (3.12).

(ii) In order to prove inequality (3.1), we proceed along the line of the second proof of the 1-

dimensional Prékopa-Leindler inequality given in [18, Section 4]. Let H : R→ R+ be a measurable

function satisfying

H((1− λ)x+ λy) ≥ F (x)1−λG(y)λ ∀x, y ∈ R ,

and, for t ∈ R, let

w(t) := (1− λ)uF (t) + λuG(t) .

Setting for brevity f := F ◦ uF and g := G ◦ uG, one has:∫
R
H ≥

∫ 1

0
H(w(t))w′(t) dt

≥
∫ 1

0
f1−λgλ

[
(1− λ)u′F + λu′G

]
dt

=

∫ 1

0
f1−λgλ

[
(1− λ)

1

f
+ λ

1

g

]
dt .

(3.13)

Now we recall that, given positive numbers x, y, and λ ∈ (0, 1), setting A := (1 − λ)x + λy and

G := x1−λyλ, the following version of the arithmetic-geometric inequality holds [2]:

A− G ≥ 1

2 max{x, y}
[(1− λ)(x− G)2 + λ(y − G)2] . (3.14)
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By (3.13) and (3.14), it holds

γλ(F,G) =

∫
R
H − 1 ≥ 1

2

∫ 1

0

f1−λgλ

max{ 1
f ,

1
g}

[
(1− λ)

( 1

f
− 1

f1−λgλ

)2
+ λ
(1

g
− 1

f1−λgλ

)2]
dt

=
1

2

∫ 1

0

f1−λgλ

max{ 1
f ,

1
g}

[(1− λ)

f2(1−λ)

( 1

fλ
− 1

gλ

)2
+

λ

g2λ

( 1

f1−λ −
1

g1−λ

)2]
dt .

Then, by using the elementary inequalities

|xα − yα| ≥ αmax{x, y}α−1|x− y| ∀x, y > 0 , α ∈ (0, 1) ,

and

x+ y ≥ xλy1−λ ∀x, y > 0 , λ ∈ (0, 1) ,

we get

γλ(F,G) ≥ 1

2

∫ 1

0

f1−λgλ

max{ 1
f ,

1
g}

∣∣∣ 1
f
− 1

g

∣∣∣2[λ2(1− λ)

f2(1−λ)
max

{ 1

f
,

1

g

}2(λ−1)
+
λ(1− λ)2

g2λ
max

{ 1

f
,

1

g

}−2λ
]
dt

≥
∫ 1

0

1

max{ 1
f ,

1
g}2
∣∣∣ 1
f
− 1

g

∣∣∣2f (1−λ)(1−2λ)gλ−2λ(1−λ) max
{ 1

f
,

1

g

}4λ(λ−1)+1
dt

≥ c(λ)

∫ 1

0

1

max{ 1
f ,

1
g}2
∣∣∣ 1
f
− 1

g

∣∣∣2 dt .
Finally we apply the Hölder inequality to obtain

γλ(F,G) ≥ c(λ)
[ ∫ 1

0
min{f, g}

∣∣∣ 1
f
− 1

g

∣∣∣ dt]2

This concludes the proof of inequality (3.1) by noticing that∫ 1

0
min{f, g}

∣∣∣ 1
f
− 1

g

∣∣∣ dt =

∫
{ 1
g
< 1
f
}

( 1

f
− 1

g

)
f dt+

∫
{ 1
f
< 1
g
}

(1

g
− 1

f

)
g dt

=

∫
{f<g}

(
1− f

g

)
dt+

∫
{g<f}

(
1− g

f
) dt

= L1
(
{f 6= g}

)
−
∫
{f<g}

f

g
dt−

∫
{g<f}

g

f
dt .

Inequality (3.2) is an immediate consequence of inequality (3.1) and Theorem 3.1.

4 Applications

4.1 Refined Brunn-Minkowski type inequalities for variational functionals

Among its many applications, the Prékopa-Leindler has been used in the literature in order to

obtain Brunn-Minkowski type inequalities for variational functionals. Our results yield refined
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versions of such inequalities, the extra-term involving a certain distance between the solutions to

the corresponding problems (provided such solutions fall into one of the appropriate classes of

functions).

As an example, let us detail a refined Brunn-Minkowski inequality for the torsional rigidity.

Recall that the torsional rigidity of an open bounded domain Ω of Rn is defined as

τ(Ω) =

∫
Ω
|∇uΩ|2 dx =

∫
Ω
uΩ dx ,

being uΩ the unique solution in H1
0 (Ω) to the Dirichlet problem

−∆u = 1 in Ω

u = 0 on ∂Ω .

(4.1)

In dimension n, the shape functional τ(·) is easily checked to be homogeneous of degree n+ 2 under

domain dilations. Moreover, on the class Kn of convex bodies (convex compact sets with nonempty

interior in Rn), it is known to satisfy the following Brunn-Minkowski type inequality [8]

τ((1− λ)K0 + λK1)1/(n+2) ≥ (1− λ)τ(K0)1/(n+2) + λτ(K1)1/(n+2) ∀K0,K1 ∈ Kn , λ ∈ (0, 1) ,

and the inequality is an equality if and only if K0 and K1 are homothetic.

As a consequence of Proposition 3.2, such an inequality holds in the following refined form:

Proposition 4.1. Let K0,K1 ∈ Kn, and denote by u0, u1 the corresponding solutions to problem

(4.1). For every λ ∈ (0, 1), there holds

τ((1− λ)K0 + λK1)1/(n+2) ≥
[
(1− λ)τ(K0)1/(n+2) + λτ(K1)1/(n+2)

]
·
[
1 + dn

( u0

τ(K0)
,

u1

τ(K1)

)]
,

being dn the distance modulo translations defined in (2.7), with d as in (3.4).

Proof. We follow the approach adopted in the proof of Theorem 11 in [11]. We set Kλ := (1 −
λ)K0 + λK1, and we denote by uλ the solution to problem (4.1) on Kλ. After extending them to

0 respectively outside K0,K1,Kλ, we may consider the functions u0, u1, uλ as defined on the whole

space Rn . By [11, Theorem 20] and the arithmetic-geometric inequality, it holds

uλ((1− λ)x+ λy) ≥ u0(x)1−λu1(y)λ ∀x, y ∈ Rn . (4.2)

Moreover, taking the class A as in (3.3) and denoting by An the corresponding class given by (2.6),

it holds
ui

τ(Ki)
∈ An i = 0, 1 . (4.3)

Indeed, it is known that
√
ui are concave (see [19] and also [1, 10]). Hence in particular ui are

log-concave, which implies (4.3) recalling Remark 3.3. By (4.2) and (4.3), Proposition 3.2 yields

τ(Kλ) ≥ τ(K0)1−λτ(K1)λ
[
1 + dn

( u0

τ(K0)
,

u1

τ(K1)

)]
. (4.4)

The proposition follows by applying (4.4) to

K ′0 :=
K0

τ(K0)1/(n+2)
, K ′1 :=

K1

τ(K1)1/(n+2)
, λ′ :=

λτ(K1)1/(n+2)

(1− λ)τ(K0)1/(n+2) + λτ(K1)1/(n+2)
.
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4.2 Refined Minkowski first inequality for log-concave functions

A functional form of Minkowski first inequality has been recently obtained in [12], settled in a

suitable class of log-concave functions on Rn. Let us show how such an inequality can be improved,

by exploiting the Prékopa-Leindler inequality in refined form. We need to introduce some notation

from [12]. Set

L :=
{
u : Rn → R ∪ {+∞}

∣∣ u proper, convex, lim‖x‖→+∞ u(x) = +∞ .
}

For any log-concave function of the form f = e−u, with u ∈ L, consider the total mass functional

J(f) =

∫
Rn
f dx ∈ [0,+∞) .

Moreover, if g = e−v for some v ∈ L, and α, β ∈ R+, set

(α · f ⊕ β · g)(x) := sup
y∈Rn

f

(
x− y
α

)α
g

(
y

β

)β
.

In this algebraic structure, according to [12, Theorem 3.6], the following derivative turns out to

exist as soon as J(f) > 0:

δJ(f, g) := lim
t→0+

J(f ⊕ t · g)− J(f)

t

Then, the functional form of Minkowski first inequality for log-concave functions established in [12,

Theorem 5.1] reads

δJ(f, g) ≥ J(f)
[

log J(g) + n
]

+

∫
Rn
f log f dx− J(f) log J(f) , (4.5)

and the inequality is an equality if and only if g(x) = f(x+ b) for some b ∈ Rn.

Let us show how a lower bound on the Prékopa-Leindler deficit of f and g produces an extra-term

in the right hand side of (4.5):

Proposition 4.2. Let f = e−u and g = e−v, with u, v ∈ L. Assume that the Prékopa-Leindler

deficit of f and g satisfies a lower bound of the kind

γλ(f, g) ≥ ψλ(d(f, g)) ,

where d is some distance modulo translations and ψλ : R+ → R+ is a continuous increasing function

with ψλ(0) = 0. Assume in addition that the map λ 7→ ψλ(·) vanishes and is differentiable at

λ = 0+. Then (4.5) can be improved into

δJ(f, g) ≥ J(f)
[

log J(g) + n
]

+

∫
Rn
f log f dx− J(f) log J(f) +

d

dλ
ψλ(d(f, g))|λ=0

. (4.6)

Proof. By the assumption γλ(f, g) ≥ ψλ(d(f, g)), it holds

J [(1− λ) · f ⊕ λ · g] ≥ J(f)1−λJ(g)λ
[
1 + ψλ(d(f, g))] ∀λ ∈ [0, 1] .

Hence, the function ψ(λ) := log
(
J((1− λ) · f ⊕ λ · g)

)
satisfies

ψ(λ) ≥ ψ(0) + λ
[
ψ(1)− ψ(0)] + log[1 + ψλ(d(f, g))] ∀t ∈ [0, 1] .

12



As a consequence, the (right) derivative of ψ at λ = 0 satisfies

ψ′(0) ≥
[
ψ(1)− ψ(0)

]
+

d

dλ
ψλ(d(f, g))|λ=0

. (4.7)

By Lemma 5.4 in [12], we have

ψ′(0) =
δJ(f, g)− δJ(f, f)

J(f)
.

Therefore (4.7) can be rewritten as

δJ(f, g)− δJ(f, f)

J(f)
≥ log

(J(g)

J(f)

)
+

d

dλ
ψλ(d(f, g))|λ=0

.

Inserting into the above inequality the expression of δJ(f, f) given by [12, Proposition 3.11], (4.6)

is proved.

We point out that Proposition 4.2 may be helpful to obtain refined formulations of other functional

inequalities such as the functional isoperimetric inequality (cf. [12, Proposition 6.1]) or log-Sobolev

type inequalities with respect to log-concave probability densities (cf. [12, Proposition 6.2]). In fact,

the quite abstract formulation of inequality (4.6) becomes more explicit when dealing with suitable

subclasses of log-concave functions where the representation formulae obtained in [12] for δJ(f, g)

hold true. On the other hand, it is clear that such strategy may be successfull only if the extra-term

in (4.6) is nonzero, namely only if

d

dλ
ψλ(d(f, g))|λ=0

6= 0 . (4.8)

Let us notice that such condition is satisfied when considering the lower bound for the Prékopa-

Leindler deficit provided by Proposition 3.5. Indeed, by direct inspection of the proof, one can

easily check that in that case there holds

ψλ(t) = c(λ)t2 , with c(λ) = λ1+λ(1− λ)2−λ ,

so that c(0) = 0 and c′(0) = 1.

The situation is more delicate when considering the lower bound for the Prékopa-Leindler deficit

provided by Proposition 3.2. Indeed the explicit dependence on λ of the constant c(λ) appearing

therein (which comes from the work [4] of Ball and Böröczky) is by now not available, so that at

this stage we are not able to verify the validity of (4.8), and some further investigation is needed in

this respect.
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