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Abstract

We introduce and discuss shape based models for finding the best interpolation data when
reconstructing missing regions in images by means of solving the Laplace equation. The shape
analysis is done in the framework of Γ-convergence, from two different points of view. First, we
propose a continuous PDE model and get pointwise information on the ”importance” of each
pixel by a topological asymptotic method. Second, we introduce a finite dimensional setting into
the continuous model based on fat pixels (balls with positive radius), and study by Γ-convergence
the asymptotics when the radius vanishes. In this way, we obtain relevant information about
the optimal distribution of the best interpolation pixels. We show that the resulting optimal
data sets are identical to sets that can also be motivated using level set ideas and approximation
theoretic considerations. Numerical computations are presented that confirm the usefulness of
our theoretical findings for PDE-based image compression.
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1 Introduction

In the last decade partial differential equations (PDEs) and variational techniques have been pro-
posed for a number of interpolation problems in digital image analysis. Many of them deal with
so-called inpainting problems [9, 10, 16, 32, 43, 49], where one aims at filling in missing informations
in certain corrupted image areas by means of second or higher-order PDEs. To this end one regards
the known image data as Dirichlet boundary conditions, and interpolates the unknown data in the
inpainting regions by solving appropriate boundary value problems. Related variational and PDE
methods have also been investigated for more classical interpolation problems such as zooming into
an image by increasing its resolution [2, 5, 6, 15, 42, 46, 51]. Some other PDE-based interpolation
strategies have been tailored to specific data sets such as level set representations for digital eleva-
tion maps [27, 48, 52]. Moreover, some variational L1 minimization ideas play an important role
in recent compressed sensing concepts [13].

One of the biggest challenges for PDE-based interpolation in image analysis is image compres-
sion. While there are numerous publications that exploit the smoothing properties of PDEs as pre-
or postprocessing tools in connection with well-established compression methods such as JPEG or
wavelet thresholding, only a few attempts have been made to incorporate them actually in these
methods [18, 41, 45, 53]. A more direct way, however, would be to design a pure PDE-based com-
pression method that does not require being coupled to any existing codec. A tempting idea would
be to store only a small amount of “important” pixels (say e.g. 10 %) and interpolate the others
by suitable PDEs. This gives rise to two questions:

1. How can one find the most “important” pixels that give the best reconstructions?
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2. What are the most suitable PDEs for this purpose?

Intuitively one expects that one should choose more points in regions where the gray values fluctuate
more rapidly, while the interpolation point density is supposed to be lower in slowly varying image
areas. Galic et al. [30] have used a B-tree triangular coding strategy from [25] in combination with
anisotropic PDEs of diffusion type. The B-tree triangular coding selects the interpolation points as
vertices of an adaptive triangulation with a higher resolution in more fluctuating areas. Extensions
to image sequences have been considered by Köstler et al. [38].

Parallel to these adaptation strategies, some feature-based approaches have been explored.
Chan and Shen [17] considered regions around image edges and used interpolating PDEs that
penalize the total variation of the image. Methods of this type are close in spirit to earlier work
on image reconstruction from edges [14, 26, 35, 54] or other feature points in Gaussian scale-space
[36, 37, 40]. Zimmer [55] stored corner neighborhoods and reconstructed the image using anisotropic
diffusion combined with mean curvature motion.

It is clear that one should not expect that these heuristic strategies give the optimal set of
interpolation points, in particular since most of the before mentioned methods do not take into
account that the optimal set also depends on the interpolating PDE.

Interestingly, experiments indicate that even one of the simplest PDEs can give good interpola-
tion results if the interpolation data are chosen carefully: Using a stochastic optimization strategy
in conjunction with the Laplace equation for interpolation, Dell performed experiments [24] demon-
strating that the most useful points indeed have a higher density near edges. Similar findings can
also be observed for surface interpolation problems using the Laplace-Beltrami operator [4]. How-
ever, even with sophisticated algorithms, a stochastic optimization is still too slow for practically
useful PDE-based image coding. Thus, it would be helpful to derive analytical results on how to
select good interpolation points for PDE-based compression. This will be the topic of the present
paper. For simplicity, we focus on the interpolants based on the Laplace equation. Most of our
mathematical analysis tools stem from the theory of shape optimization.

Let us now give a mathematical formalization of the problem. Let D ⊆ R2 be the support of
an image (say a rectangle) and f : D → R an image which is assumed to be known only on some
region K ⊆ D. There are several PDE models to interpolate f and give an approximation of the
missing data. One of the simplest way is to approach f |D\K by the harmonic function on D \K,
having the Dirichlet boundary data f |K on K and homogeneous Neumann boundary conditions on
∂D, i.e. to solve 

−∆u = 0 in D \K,
u = f on K,

∂u
∂n = 0 on ∂D \K.

(1)

Denoting by uK the solution of (1), the precise question is to identify the region K which gives the
“best” approximation uK , in a suitable sense, for example which minimizes one of the norms∫

D
|uK − f |pdx or

∫
D
|∇uK −∇f |2dx.

Intuitively, the larger the set K, the better the approximation is. This is only partially true, since a
small well chosen region can give better approximations than large badly chosen ones. For practical
reasons, for image compression purposes, one has to search a set K that satisfies a constraint which
limits its size.
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The purpose of this paper is to introduce and discuss a model based on shape analysis tools
which is intended to obtain information about those regions K which give the best approximation
of the image, under a constraint on their size. The best approximation is to be understood in the
sense of a norm (Lp or H1), while the constraint on the size of K is to be understood in the sense
of a suitable measure (Lebesgue measure, Hausdorff measure, counting measure or capacity). We
refer the reader to [11] for an introduction to shape analysis techniques and a detailed exposition
of the main tools used throughout the paper.

Two directions will be taken. The first idea is to set a continuous PDE model and search
pointwise information by a topological asymptotics method, in order to evaluate the influence of
each pixel in the reconstruction. If m is one of the measures above, roughly speaking the model we
consider is equivalent to

max
K

min
u∈H1(D),u=f on K

∫
D
|∇u|2dx−m(K).

The second way is to simulate into the continuous frame a finite dimensional shape optimization
problem by imposing K to be the union of a finite number of fat pixels. Performing the asymptotic
analysis by Γ-convergence when the number of pixels is increasing (in the same time that the fatness
vanishes), we obtain useful information about the optimal distribution of the best interpolation
pixels.

The remainder of our paper is organized as follows. In Section 2 we review a number of useful
concepts. A continuous shape optimization model is analyzed in Section 3, and finite dimensional
considerations are presented in Section 4. These shape analysis results are complemented by a
mathematical motivation for using a more fuzzy point selection strategy in Section 5. Similar
results are obtained in Section 6 where the data selection problem is treated from an approximation
theoretic viewpoint. In Section 7 we present numerical experiments where our data selection
strategies are applied to a real-world image. Our paper is concluded with a summary in Section 8.

2 Γ-Convergence, Capacity and Measures

Let D ⊆ R2 be a smooth bounded open set and α > 0. The α-capacity of a subset E in D is

capα(E,D) = inf
{∫

D
|∇u|2 + α|u|2 dx : u ∈ UE

}
,

where UE is the set of all functions u of the Sobolev space H1
0 (D) such that u ≥ 1 almost everywhere

in a neighborhood of E.
If a pointwise property holds for all x ∈ E except for the elements of a set Z ⊆ E with

capα(Z) = 0, we say that the property holds quasi-everywhere on E and write q.e. The expression
almost everywhere refers, as usual, to the Lebesgue measure. We notice the sets of zero capacity
are the same, for every α > 0. For this reason, in the sequel we simply drop α since all concepts
defined below are independent of α. The constant α plays a role only in the optimization process,
as a parameter.

A subset A of D is said to be quasi-open if for every ε > 0 there exists an open subset Aε

of D, such that A ⊆ Aε and capα(Aε \ A,D) < ε. A function f : D → R is said to be quasi-
continuous (resp. quasi-lower semi-continuous) if for every ε > 0 there exists a continuous (resp.
lower semi-continuous) function fε : D → R such that capα({f 6= fε}, D) < ε, where {f 6= fε} =
{x ∈ D : f(x) 6= fε(x)}. It is well known (see, e.g., [34]) that every function u of the Sobolev space
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H1
0 (D) has a quasi-continuous representative, which is uniquely defined up to a set of capacity zero.

Throughout the paper, we identify the function u with its quasi-continuous representative, so that
a pointwise condition can be imposed on u(x) for quasi-every x ∈ D. Equalities like u = 0 on a
Borel set K are understood in the sense quasi-everywhere for a quasi-continuous representative.

We denote by M0(D) the set of all nonnegative Borel measures µ on D, such that

i) µ(B) = 0 for every Borel set B ⊆ D with cap(B,D) = 0,

ii) µ(B) = inf{µ(U) : U quasi-open, B ⊆ U} for every Borel set B ⊆ D.

We stress the fact that the measures µ ∈M0(D) do not need to be finite, and may take the value
+∞.

There is a natural way to identify a quasi-open set to a measure. More generally, given an
arbitrary Borel subset E ⊆ Ω, we denote by ∞|E the measure defined by

i) ∞|E(B) = 0 for every Borel set B ⊆ D with cap(B ∩ E,D) = 0,

ii) ∞|E(B) = +∞ for every Borel set B ⊆ D with cap(B ∩ E,D) > 0.

Definition 2.1 The α-capacity of a measure µ ∈M0(D) is defined by

capα(µ) = inf
u∈H1

0 (D)

[ ∫
D
|∇u|2dx + α

∫
D

u2dx +
∫

D
(u− 1)2dµ

]
.

Definition 2.2 A sequence of functionals defined on a topological space V Fn : V → R Γ-converges
to F in V if for every u ∈ V there exists a sequence un ∈ V such that un → u in V and

F (u) ≥ lim sup
n→∞

Fn(un),

and for every convergent sequence un → u in V

F (u) ≤ lim inf
n→∞

Fn(un).

The main property of the Γ-convergence is that every convergent sequence of minimizers of Fn

has as limit a minimizer of F . For a measure µ ∈M0(D), we denote Fµ : H1(D) → R

Fµ(u) =
∫

D
|∇u|2dx +

∫
D
|u|2dµ.

Definition 2.3 We say that a sequence (µn) of measures in M0(D) γ-converges to a measure
µ ∈ M0(D) if and only if Fµn Γ-converges in L2(D) to Fµ.

Note that the γ-convergence is metrizable by the distance dγ(µ1, µ2) =
∫
D |wµ1 −wµ2 |dx, where

wµ is the variational solution of (formal) −∆wµ + µwµ = 1 in H1
0 (D) ∩ L2(D,µ) (see [11, 21]).

The precise sense of this equation is the following: wµ ∈ H1
0 (D) ∩ L2(D,µ) and for every φ ∈

H1
0 (D) ∩ L2(D,µ), ∫

Ω
∇wµ∇φdx +

∫
Ω

wµφdµ =
∫

Ω
φdx.

In view of the result of Hedberg [33], if A is an open subset of D, the solution of this equation
associated to the measure ∞D\A is nothing else but the solution in the sense of distributions of

−∆w = 1 in A, w ∈ H1
0 (A).

We refer to [20] for the following result.
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Proposition 2.4 The space M0(D), endowed with the distance dγ, is a compact metric space.
Moreover, the class of measures of the form ∞D\A, with A open (and smooth) subset of D, is dense
in M0(D).

3 The Continuous Model

Let D ⊆ R2 be a rectangle (symmetric with respect to the origin), the support of an image
f : D → R. We assume for technical reasons that f ∈ H1(D) ∩ L∞(D). One could formally work
with functions having jumps (like SBV-functions, or local H1 functions separated by jump sets),
but the interpolation we perform which is based on elliptic PDE in H1 cannot reconstruct jumps.
Hence, a localization and an identification of contours should precede a local H1 interpolation.

For some Borel set K ⊆ D, which is assumed to be the known part of the image (i.e. f |K is
known, while f |D\K is not), one “reconstructs” f by interpolating the missing data. Several inter-
polation processes can be employed, which roughly speaking consist in solving a partial differential
equation with boundary data f |K .

Our model is concerned with the harmonic interpolation based on equation (1). For every Borel
set K ⊆ D, the weak solution uK ∈ H1(D) is the minimizer of

min
{∫

D
|∇u|2dx : u ∈ H1(D), u = f q.e. on K

}
.

This problem has a unique solution as soon as K has positive capacity.
In order to define the model, one has to specify the norm of the best approximation of the

image and the cost in terms of size of the set K, which should be expressed with a measure.

3.1 Analysis of the Model

Choice of the norm. Numerical evidence suggest to approach the gradient of f . This was
observed in practice: On regions where the gradient is large (say around a contour of discrete
discontinuities), it is more preferable to keep two parallel contours with significantly different values
of f , and hence approach the gradient, than a single contour with low variation values.

In this frame, the criterion reads

min
K⊆D

∫
D
|∇uK −∇f |2dx. (2)

Instead of the L2 norm of the ∇uK −∇f above, one could also consider some Lp norm of uK − f .
Since numerical evidence suggests to use (2), we concentrate our discussion on this norm, but most
of the theoretical results remain valid without any modification.

Choice of the measure. The constraint on K plays a crucial role in the shape analysis of
the problem. There is a significant gap between the constraint in the continuous setting and the
constraint in the discrete model, which is always the counting measure! In practice, in the discrete
setting one intends to keep the lowest number of pixels. Consequently, an ideal model should
impose a measure constraint on K which after discretization becomes the counting measure. A
suitable way to deal with this problem is to consider fat pixels in association with the counting
measure, and perform an asymptotic analysis.

A first intuitive constraint would be expressed in terms of the Lebesgue measure and takes the
form

|K| ≤ c. (3)
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Nevertheless, from a mathematical point of view, problem (2) associated to the constraint (3) is
ill-posed (see the precise statement in Proposition 3.1 below). This is again a consequence of the
transition from the discrete model to the continuous one. A pixel in the discrete setting corresponds
in fact to a small square or a small ball (with positive area), while in the continuous one to a point!
Since there are sets of zero Lebesgue measure but with positive capacity, constraint (3) may lead
to almost optimal structures K of zero measure.

Proposition 3.1 Problem (2)-(3), has in general no solution, the infimum in (2) being equal to
zero.

Proof The proof is a direct consequence of the more general result below. 2

An alternative would be to replace the Lebesgue measures by the one dimensional Hausdorff
measure

H1(K) ≤ c. (4)

We prove in the sequel that (2)-(4) is in general ill-posed, unless a constraint on the number
of connected components of K is added. This behavior is similar to the one observed for the
Mumford-Shah functional (see [39]).

Theorem 3.2 Problem (2)-(4) is in general ill-posed, in the sense that the infimum in (2) is zero,
and there is no solution under constraint (4).

Proof Let Kn(c) = ∪i,j∈ZBij(c) ∩D, where Bij(c) is the closed ball of radius e−cn2
centered in

(i/n, j/n). Following [19], for every g ∈ H−1(D) the solutions of{
−∆vn,c = g in D \Kn(c),

vn,c ∈ H1
0 (D \Kn(c))

converge weakly in H1
0 (D) to vc, the solution of{

−∆vc + cvc = g in D,
vc ∈ H1

0 (D)
(5)

The same behavior can be observed if the boundary conditions of vn,c on ∂D are mixed, of the form
vn,c = 0 on Γn(c) and ∂vn,c/∂n = g on ∂D \Γn(c). Here g ∈ L2(∂D) is fixed and Γn(c) ⊆ ∂D is on
each edge, say [0, L], of ∂D of the form ∪i∈Z[i/n, (i + c−1)/n] ∩ [0, L]. Using the capacity density
condition (see for instance [11, Chapter 4]) and the locality of the γ-convergence, we have that the
weak limit in H1(D) of the sequence vn,c is still the solution of (5).

Taking a sequence ck →∞, by a diagonal procedure we find Knk
(ck)∪Γnk

(ck) := Kk such that
vKk

→ 0 weakly H1(D), and

n2
ke
−ckn2

k +
1
ck
H1(∂D) → 0.

Since ck →∞, we obtain that the convergence vKk
→ 0 is strong in H1(D).

Consequently, after solving (1) on D \Kk, we have for the solution uk
−∆(uk − f) = −∆f in D \Kk,

u− f = 0 on D \Kk,
∂(uK−f)

∂n = −∂f
∂n on ∂D \Kk.
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Thus, uk − f converges strongly to zero in H1
0 (D). This infimum is, in general, not attained for a

set K with finite Hausdorff measure. It is enough to consider a function f ∈ C2(D) for which the
set {x ∈ D : ∆f 6= 0} has positive Lebesgue measure.

In order to complete the proof, we replace in the construction of Kk the union of the discs Knk

by the union of their boundaries. Since the Lebesgue measure of Knk
asymptotically vanishes, the

limit of uk remains unchanged. 2

Let us denote by ]K the number of the connected components of K. Then the following result
can be established.

Theorem 3.3 Given l ∈ N, problem (2)-(4) supplemented with the constraint ]K ≤ l has at least
one solution.

Proof Existence of a solution holds by using the continuity/compactness result in the Hausdorff
complementary topology due to Sverak (see [11]) together with the Golab theorem.

Indeed, let (Kn) be a minimizing sequence for (2), such that H1(Kn) ≤ c and ]Kn ≤ l. The
compactness of the Hausdorff metric provides a subsequence (still denoted using the same index)
such that Kn converges to K. Then, ]K ≤ l and by the Golab theorem on the lower semicontinuity
of the Hausdorff measure, we get H1(K) ≤ c.

In order to conclude one needs to prove that the energy is lower semicontinuous. In fact this is
continuous, from the Sverak stability result applied to the equations

−∆vn = −∆f in D \Kn, vn ∈ H1
0 (D \Kn),

which has as solutions vn = uKn − f . 2

A proper mathematical analysis of this problem involves a constraint in terms of the α-capacity,
which is the natural measure for the defect of continuity of Sobolev functions:

capα(K) ≤ c. (6)

Problem (2)-(6) is equivalent to

max
K,capα(K)≤c

min
u∈H1(D),u=f onK

∫
D
|∇u|2,

which penalizing the constraint becomes

max
K⊆D

min
u∈H1(D),u=f onK

∫
D
|∇u|2dx− β capα(K). (7)

Notice that (7) is a max-min problem associated to the Dirichlet energy into a Sobolev space
with prescribed boundary values. This is to be compared to the cantilever problem in structure
mechanics (see [11]) which, in the context of Neumann conditions on the free boundary, leads to a
relaxation process. In order to discuss problem (7) we introduce the following notations.

For every measure µ ∈M0(D), we set Fµ : H1(D) → R ∪ {+∞},

Fµ(u) =


∫

D
|∇u|2dx +

∫
D

(u− f)2dµ if |u| ≤ |f |∞,

+∞ else
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and
E(µ) = min

u∈H1(D)
Fµ(u) = min

u∈H1(D)

∫
D
|∇u|2dx +

∫
D

(u− f)2dµ.

We notice from the maximum principle that the minimizer above has to satisfy |u| ≤ |f |∞, so it
coincides with minFµ(u).

We also observe that the functionals Fµ are equi-coercive with respect to µ:

Fµ(u) ≥
∫

D
|∇u|2 + u2dx− |f |2∞|D|.

For technical reasons, we do not allow the sets K to touch the boundary of D. For some δ > 0 we
introduce the following notations:

D−δ := {x ∈ D : d(x, ∂D) ≥ δ},

Kδ(D) := {K ⊆ D : K closed, K ⊆ D−δ},

and
Mδ(D) := {µ ∈M0(D) : µbD\D−δ= 0}.

The family Mδ(D) is compact with respect to the γ-convergence, as a consequence of the locality
of the γ-convergence.

We start with the following technical result (see also [21]).

Lemma 3.4 Let µn ∈Mδ
0(D), µn

γ−→ µ. Then capα(µn) → capα(µ).

Proof It is sufficient to prove that the Γ-convergence of the functionals, which can be done by a
partition of unity. 2

Below are the mathematical main results of the paper.

Theorem 3.5 If µn ∈ Mδ(D) γ-converges to µ, then µ ∈ Mδ(D) and Fµn Γ-converges to Fµ in
L2(D).

Theorem 3.6 We have
clγKδ(D) = Mδ(D),

and
sup

k∈Kδ(D)
(E(K)− β capα(K)) = max

µ∈Mδ(D)
(E(µ)− β capα(µ)).

As a consequence of Theorems 3.5-3.6, from every maximizing sequence in supk∈Kδ(D)(E(K) −
β capα(K)) one can extract a γ-convergent subsequence such that the γ-limit measure is solution
of the relaxed problem maxµ∈Mδ(D)(E(µ)− β capα(µ)), or

max
µ∈Mδ(D)

min
u∈H1(D)

∫
D
|∇u|2dx +

∫
D

(u− f)2dµ− β capα(µ). (8)
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Proof [of Theorem 3.5.] We shall prove independently both conditions of the Γ-convergence.

Γ-liminf. Let un → u in L2(D). Let ϕ ∈ C∞c (D), 0 ≤ ϕ ≤ 1, and ϕ = 1 on D−δ. Then unϕ → uϕ
in L2(D), and from the γ-convergence µn → µ we have

lim inf
n→∞

[ ∫
D
|∇(unϕ)|2dx +

∫
D
|unϕ|2dµn

]
≥
∫

D
|∇(uϕ)|2dx +

∫
D
|uϕ|2dµ.

Since µn is vanishing on D \D−δ, by the locality property of the γ-convergence (see for instance
[21]) we get that µ is also vanishing on D \D−δ. Consequently, we have

lim inf
n→∞

[ ∫
D
|∇un|2ϕ2dx + 2

∫
D

unϕ∇un∇ϕdx +
∫

D
|∇ϕ|2u2

ndx +
∫

D
u2

ndµn

]
≥∫

D
|∇u|2ϕ2dx + 2

∫
D

uϕ∇u∇ϕdx +
∫

D
|∇ϕ|2u2dx +

∫
D

u2dµ,

or by eliminating the converging terms

lim inf
n→∞

[ ∫
D
|∇un|2ϕ2dx +

∫
D

u2
ndµn

]
≥
∫

D
|∇u|2ϕ2dx +

∫
D

u2dµ.

Using 0 ≤ ϕ ≤ 1 one eliminates ϕ on the left hand side, and taking the supremum over all admissible
ϕ on the right hand side

lim inf
n→∞

∫
D
|∇un|2dx +

∫
D

u2
ndµn ≥ sup

ϕ

{∫
D
|∇u|2ϕ2dx +

∫
D

u2dµ

}
we get the Γ− lim inf inequality.

Γ-limsup. Let u ∈ H1(D), |u| ≤ |f |∞ and ũ ∈ H1
0 (D) an extension of u on a dilation of D, say

Dδ. By the locality property of the γ-convergence, we still have that µn γ-converges to µ in Dδ for
the operator

H1
0 (Dδ) 3 u 7→ −div (1D + ε1Dδ\D)∇u ∈ H−1(Dδ),

for every ε > 0. Consequently, there exists a sequence uε
n ∈ H1

0 (Dδ) such that uε
n → ũ in L2(Dδ)

and ∫
D
|∇ũ|2dx + ε

∫
Dδ\D

|∇ũ|2dx +
∫

D
(ũ− f)2dµ ≥

lim supn→∞

[ ∫
D
|∇ũε

n|2dx + ε

∫
Dδ\D

|∇ũε|2dx +
∫

D
(ũε

n − f)2dµn

]
,

and hence∫
D
|∇ũ|2dx + ε

∫
Dδ\D

|∇ũ|2dx +
∫

D
(ũ− f)2dµ ≥ lim sup

n→∞

[ ∫
D
|∇ũε

n|2dx +
∫

D
(ũε

n − f)2dµn

]
.

The function ũ being fixed, we make ε → 0 and extract by a diagonal procedure a sequence uεn
n

converging in L2(Dδ) to ũ, such that the Γ− lim sup inequality holds. 2

Proof [of Theorem 3.6.] On the one hand, Kδ(D) ⊆Mδ(D) so the inclusion clγKδ(D) ⊆Mδ(D)
is obvious from the γ-compactness of Mδ(D).

Conversely, let µ ∈ Mδ(D). By the density result of shapes [20] there exists a sequence of
closed sets Kn ⊆ D such that D \Kn γ-converges to µ. Moreover, the sequence Kn can be chosen
such that Kn ⊆ (D−δ)1/n, from the locality property of the γ-convergence. Making a homothety
εnKn, with suitable εn > 0 we get εnKn ⊆ D−δ), so εnKn ∈ Kδ(D). We can choose εn → 1, hence
D \ εnKn γ-converges to µ. 2
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In the proof of this theorem, we cannot choose a priori the sequence Kn in D−δ since D−δ is
a closed set. In the pathological case that D−δ would be a line, a measure can be supported on
a line, while an open set can not be contained in a one dimensional set. The homothety can be
performed because D−δ has a particular structure, being star shaped with respect to the origin.

3.2 Topological Asymptotic: Identifying the ”Influence” of Each Pixel

Many usual shape optimization algorithms are based on shape derivative steepest descent methods
associated to a level set approach. The knowledge of the relaxed formulation (Theorem 3.6) to
the interpolation problem leads to algorithms of new type, which compute the relaxed solutions
(here the measure µ) that solve the relaxed problem (here (8)) and is followed by an appropriate
projection which yields a shape approximation of the true solution (see [1], [8], [28], [31]).

Due to the analogy of our formulation of the image interpolation problem with the cantilever
problem, we will use a topological gradient based algorithm as in [31] (see also [7, 47]). It simply
consists in starting with K = D and computing the asymptotic of the non-relaxed cost functional
(7) with respect to performing small holes and eliminating those small balls which have the “least“
increasing effect on the functional. In the present case, it constitutes a powerful tool allowing for
very fast convergence and very low cost.

In this section we compute the topological gradient which turns to be related to the harmonicity
defect of f . As observed in practice, the region of f which should be kept is the one where the
|∆f | is large. Assume in all this section that f is smooth enough (roughly speaking, f ∈ C2(D)).

Let us denote by Kε the compact set K \B(x0, ε), where B(x0, ε) is the ball centered at x0 ∈ D
with radius ε, and assume that x0 is an interior point and ε is small enough. We consider the
functional

J(Kε) = min
u∈H1(D),u=f onKε

∫
D
|∇u|2dx,

which is assumed to be minimized by uε. Then

J(Kε)− J(K) =
∫

B(x0,ε)
|∇uε|2dx−

∫
B(x0,ε)

|∇f |2dx.

Using equation (1) satisfied by uε onD \Kε we get

J(Kε)− J(K) =
∫

B(x0,ε)
∇uε∇f − |∇f |2dx =

∫
B(x0,ε)

∆f(f − uε)dx.

We have ∆f(x) = ∆f(x0) + ‖x− x0‖O(1), and hence

J(Kε)− J(K) = ∆f(x0)
∫

B(x0,ε)
(f − uε)dx + εO(1)

∫
B(x0,ε)

(f − uε)dx.

It is enough to compute the fundamental term in the asymptotic development of the expression∫
B(x0,ε)(f − uε)dx. Using the harmonicity of uε we have∫

B(x0,ε)
(f − uε)dx =

∫
B(x0,ε)

fdx− ε

2

∫
∂B(x0,ε)

uεdσ =
∫

B(x0,ε)
fdx− ε

2

∫
∂B(x0,ε)

fdσ.

We use the Taylor formula for f around x0 and get

f(x) = f(x0) +
∑
i=1,2

∂f

∂xi
(x0)(xi − xi

0)
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+
1
2

∑
i,j=1,2

∂2f

∂xi∂xj
(x0)(xi − xi

0)(xj − xj
0) + ‖x− x0‖2o(1).

Consequently, ∫
B(x0,ε)

fdx− ε

2

∫
∂B(x0,ε)

fdσ =
∑
i=1,2

1
2

∂2f

∂x2
i

(x0)
∫

B(x0,ε)
(xi − xi

0)
2dx

= −ε

4
∂2f

∂x2
i

(x0)
∫

∂B(x0,ε)
(xi − xi

0)
2dσ + ε4o(1) = −∆f(x0)

4
π + ε4o(1).

Thus, we get
J(Kε)− J(K) = −|∆f(x0)|2

π

2
ε4 + ε4o(1).

By trivial calculus, the asymptotic expansion of the capacity is at least of order ε4 and is
independent on x0. Finally, the algorithm we use is independent of the asymptotic expansion of
capacity and takes into account only the defect of harmonicity of f , namely |∆f(x0)|. This suggests
to keep the points x0 where |∆f(x0)| is maximal. From a practical point of view, this is the main
result of our local shape analysis.

4 Optimal Distribution of Pixels: Asymptotics of the Finite Di-
mensional Model

In this section we assume f ∈ H2(D), ∂f
∂n = 0 on ∂D. Moreover, we formally consider the problem

in dimensions d = 2 and d = 3, since the 3D case has a more intuitive solution and leads to a better
comprehension of the problem.

Let m > 0 and n ∈ N, and let us define

Am,n :=
{
∪n

i=1B(xi, r) : xi ∈ Rd, r =
m

n1/d

}
.

In the sequel, a ball B(xi, r) will be called a fat pixel. We consider problem (2) for every K ∈ Am,n,
i.e.

min
K∈Am,n

∫
D
|∇uK −∇f |2dx. (9)

Of course, it is sufficient to consider only centers xi in a r neighborhood of D. Let us rename
vK = uK − f and g = ∆f ∈ L2(D). Consequently, vK solves

−∆vK = g in D \K,
vK = 0 on K,

∂vK
∂n = 0 on ∂D \K,

(10)

and the optimization problem (9) can be reformulated as a compliance optimization problem

min
K∈Am,n

∫
D

gvKdx. (11)

A similar problem, with Dirichlet boundary conditions on ∂D, was studied in [12]. Although we
deal here with Neumann boundary conditions on ∂D, if we choose to cover the boundary by balls,

11



we get rid of the Neumann boundary conditions by using only Cdn
d−1

d balls. From an asymptotic
point of view, this means that we can formally consider the Dirichlet boundary condition on ∂D.

It is easy to observe that problem (11) has always an optimal solution, say Kopt
n , which γ-

converges to ∞D. Roughly speaking, the sequence (Kopt
n )n gives asymptotically a perfect approx-

imation of f , but the number of fat pixels goes to infinity and no further information about their
distribution is provided.

This information (local density of Kopt
n ) can be obtained by using a different topology for the

Γ-convergence of the (rescaled) energies. In this new frame, the minimizers are unchanged but
their behavior is seen from a different point of view. For every K ∈ Am,n we define

µK :=
1
n

n∑
i=1

δxi ∈ P(Rd),

where δx is the Dirac measure at the point x and P(Rd) is the space of probability Borel measures
on Rd.

We introduce the functionals

Fn : P(Rd) → R ∪ {+∞},

Fn(µ) =
{

n2/d
∫
D gvKdx if µ = µK , K ∈ Am,n,

+∞ else.

We recall the following result from [12].

Theorem 4.1 Assume g ≥ 0. The sequence of functionals Fn Γ-converges with respect to the weak
? topology in P(Rd) to

F (µ) =
∫

D

g2

µ
2/d
a

θ(mµ1/d
a )dx,

where µ = µadx + ν is the Radon decomposition of µ and

θ(α) := inf{lim inf
n

n2/dF (Kn) : Kn ∈ Aα,n}.

First, we notice that the hypothesis g ≥ 0 is not restrictive from a practical point of view, since we
may formally split the discussion on the sets {∆f > 0} and {∆f < 0}. Second, as consequence of
this result we have that

µKopt
n
→ µopt, weakly ? in P(Rd),

where µopt is a minimizer of F . The knowledge of the function θ would give information on the
density of the absolute continuous part of µopt, with respect to the Lebesgue measure, thus on
µKopt

n
for n large.

Unfortunately, the function θ is not known explicitly, but following [12], a series of properties
can be established. The function θ is positive, nonincreasing and vanishes from some point on. For
a small α, the following inequalities hold:

d = 2 : C1| log α| − C2 ≤ θ(α) ≤ C3| log α|,

d = 3 : C1
1
α
− C2 ≤ θ(α) ≤ C3

1
α

.

Minimizing F leads to the following interpretation: On the regions where |g| = |∆f | is very large,
µa has to be large enough in order to approach the value for which θ vanishes. In regions where
|∆f | is small, µa may also be small. If we formally use the previous inequalities and write the Euler
equation for the minimizer, we get

12



• for d = 2: µ2
a

|1−log µa| ≈ cm,f |∆f |2,

• for d = 3: µa ≈ cm,f |∆f |,

where cm,f are suitable constants.
This result suggests to choose the interpolation data such that the pixel density is increasing with
|∆f |. Such a strategy has a more relaxed character than the hard thresholding rule we derived in
the previous section.

5 Mathematical Motivation for Dithering

Previous considerations in Section 3 suggest to select K as the level set of those points x where
|∆f(x)| exceeds some threshold, but the reasoning in Section 4 indicates that such a hard rule is not
optimal. We shall now present additional arguments based on potential theory why |∆f(x)| should
rather serve as a fuzzy indicator for selecting a point x as a candidate for a good interpolation set
K. While the decision whether some point x ∈ D belongs to K or D \ K is a binary decision,
it is clear that |∆f(x)| may attain a continuum of nonnegative values. So how can we convert
the information from |∆f | into a good interpolation set K without using a strict thresholding? In
image analysis and computer graphics, a successful concept of turning a continuous grayscale image
gc into a visually similar binary image gb is called dithering or digital halftoning [50]. It is widely
used, e.g. when printing a grayscale image on a laser printer. So let us now argue how dithering
can be used for our interpolation problem.

In the following it is important to note that the differential equation (1) can be interpreted as
a Poisson equation. Let uK be a solution to equation (1) then u is also a solution to the Poisson
equation

∆u = 1K ·∆f (12)

since uK is harmonic outside of K and uK coincides with f on K. Note that ∆f is to be understood
in the distributional sense. We might think of ∆f as a Borel measure.
Dithering is a technique used for representing primarily grayscale images as black and white images.
Hereby the grayscale distribution is simulated for the human eye by a spacial distribution of black
and white pixels. Several algorithms in numerous variants are available [50], but common to all is
that when both the grayscale and its dithered version are blurred, a very similar visual impression
should be created. Let denote λ the Lebesgue measure on the image domain D composed of
N pixels Ai: D =

⋃N
k=1 Ak. In effect, dithering means an approximation of a grayscale image

g : D → [0, 1] seen as a measure g · λ with density g w.r.t. λ by a measure
n∑

i=1
µi, i.e. g · λ ≈

n∑
i=1

µi.

The µi are probability measures concentrated on certain pixels Aki
of the image, supp(µi) ⊂ Aki

.
According to the notion of convergence of distributions [22] the approximation ‘≈‘ is understood
in the sense that the difference ∣∣∣∣∣

∫
D

ϕ · g dλ−
∫

D
ϕ d

(
n∑

i=1

µi

)∣∣∣∣∣
is small for a ‘blurring kernel‘ ϕ on D. One may think of ϕ as a (truncated) Gaussian kernel with
a not too small variance or a standard mollifier function.
Possible choices of these measures are Dirac measures, µi = δzi with zi ∈ Aki

, normalized volume
measures, µi = 1

λ(Aki
)1Aki

· λ, or correspondingly normalized surface measures on the boundary
13



∂Aki
of the pixels. A good dithering procedure preserves the average gray value of the image.

Hence the ratio of the number of white pixels and the total number of pixels is fixed. This implies
that the number of white pixels is given by the total number of pixels times the average gray value.
Hence one can adjust a priori the number of white pixels, that is, the compression rate, and a
dithering will produce by scaling the original image appropriately.
Applying a dithering procedure to a scaled version of ∆f with a scaling factor s gives an approxi-
mation

s∆f ≈
n∑

i=1

µi (13)

with compactly supported µi on pixels Aki
and where, most important, the number of pixels

corresponds to a preassigned compression rate n/N . Then we can define K as a disjoint union
K :=

⋃n
i=1 Aki

. On the set K we use
∫
D ∆fdµi , the µi-averages of ∆f , to approximate ∆f with

the measures µi from (13):

1K∆f ≈
n∑

i=1

∫
D

∆fdµi · µi . (14)

Note that the support of the measures on both sides is contained on K. Using the approximations
above we are now able to reconstruct uK .
It is known from potential theory that a solution to the Poisson equation on R2, ∆u = ρ, with a
compactly supported measure ρ is given by a convolution with the fundamental solution E2 of the
Laplacian, the logarithmic potential [23]

E2(r) =
1
2π

log(r), r > 0, (15)

that is, u = E2 ∗ ρ . Hence, we can infer from equations (12) and (14) that

u = E2 ∗∆u = E2 ∗ 1K∆f ≈
n∑

i=1

∫
∆fdµi · E2 ∗ µi . (16)

Remarks:

1. The considerations above show that dithering plays a vital role in finding a ‘good‘ set K.
This is achieved by the approximation in (14) which also conveys the compression rate via
the scaling factor s in (13).

2. A solution uK stemming from a ‘dither‘ set K is a reasonable approximation to f :

f − uK = E2 ∗ (∆f −∆uK) = E2 ∗ (∆f − 1K∆f) .

However, the selection by dithering of µi and hence of K ensures that we have on D

∆f ≈ 1K∆f (17)

which implies a small difference f − u in a suitable norm.
This also brings to light that two extreme choices of K are not likely to produce a reasonably
small difference f − u: homogeneous distributions such as completely stochastic or regular
grid-like distributions which introduce errors where ∆f is large. Similarly, choosing the set
K = |∆f | > t with a t adjusted to the desired compression rate also causes the quality of the
approximation (17) to deteriorate: the concentration on super-level sets |∆f | > t neglects the
valuable information in regions where f is flat, that is, where ∆f is small.
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3. If the measures µi are point measures δzi , equation (16) collapses to u ≈
n∑

i=1
∆f(zi)·E2(·−zi) .

4. The considerations above apply without restriction to any dimension d > 2. Instead of the
logarithmic potential one has to use the appropriate Newtonian potential, and one has use a
corresponding dithering procedure for multidimensional data.

5. The statements made about the Laplacian and its potentials can be applied essentially verba-
tim to any other linear differential operator whose fundamental solution is at ones disposal.
Hence, the the Laplacian in the above can be replaced by, for example the Helmholtz operator
(d = 2, 3), the Cauchy-Riemann operator (d = 2), or the polyharmonic operator, since their
fundamental solutions are known [22] .

6 Approximation Theoretic Motivation

Since lossy data compression is essentially an approximation theoretic problem, it is interesting to
complement the preceding considerations with an approximation theoretic motivation on how to
choose the interpolation data in a reasonable way.
In order to keep things as simple as possible, we restrict ourselves to the 1-D case with D = [a, b],
and we assume that f ∈ C2[a, b] and the interpolation data are given by K = {x1, x2, ..., xn+1} with
a < x1 < x2 < ... < xn+1 < b. Solving u′′ = 0 in some interval (xi, xi+1) with Dirichlet boundary
conditions u(xi) = f(xi) and u(xi+1) = f(xi+1) yields linear interpolation:

u(x) = f(xi) +
x− xi

xi+1 − xi
(f(xi+1)− f(xi)). (18)

Thus, the interpolation error in some point x ∈ [xi, xi+1] is given by

e(x) := |(u(x)− f(x)| =
∣∣∣∣f(xi) +

x− xi

xi+1 − xi
(f(xi+1)− f(xi))− f(x)

∣∣∣∣ (19)

Applying the mean value theorem three times, this becomes

e(x) =
∣∣f(xi) + (x− xi)f ′(ξ)− f(x)

∣∣
=

∣∣(x− xi)f ′(ξ)− (x− xi)f ′(η)
∣∣

= (x− xi) |ξ − η| |f ′′(ρ)| (20)

with some suitable points ξ, η, ρ ∈ [xi, xi+1].
Using |ξ − η| ≤ xi+1 − xi =: hi and |f ′′(ρ)| ≤ max{|f ′′(x)| |x ∈ [xi, xi+1]} =: Mi, the worst case
interpolation error in the interval [xi, xi+1] can be estimated by

ei := max
x∈[xi,xi+1]

e(x) ≤ h2
i Mi. (21)

If one wants to minimize max{e1, e2, ..., en} one should select the interval widths hi such that
e1 = e2 = ... = en. This means that

1/hi = c
√

Mi ∀i ∈ {1, ..., n} (22)

with some constant c. Since 1/hi measures the local density of the interpolation points, this suggests
that in some point x one should choose the density of the interpolation points proportional to
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√
|f ′′(x)|.

Although one may argue that 1-D considerations are only of limited usefulness for the 2-D image
interpolation problem, we observe that our simple approximation theoretic model gives suggestions
that point in the same direction as the much more sophisticated reasonings from Sections 4 and 5:
One should select the interpolation data such that their density is proportional to |∆f |p with some
power p > 0.

7 Numerical Results

Let us now illustrate the mathematical discussions with numerical experiments. To this end,
the Laplace equation has been discretized by finite differences, and the resulting linear system of
equations is solved using the successive overrelaxation (SOR) method (see e.g. [44]). The CPU
times for coding the images in our experiments are far below one second, and decoding is in the
order of a second on a PC. If necessary, there still exist a number of options for speeding up this
interpolation; see e.g. [3] and [38].

Figure 1(a) shows an original grayscale image f of size 257 × 257 pixels. In order to compute
the modulus of the Laplacian in Figure 1(b), the image has been preprocessed by convolving
it with a Gaussian of standard deviation σ = 1 pixel. This is a common procedure in image
analysis in order to address the ill-posedness of differentiation (high sensitivity w.r.t. noise and
quantization errors). If one selects the interpolation set K by thresholding the modulus of the
Gaussian-smoothed Laplacian |∆fσ| such that 10 % of all pixels are kept, one obtains the set in
Figure 1(c). The resulting interpolation in Figure 1(d) shows that this hard thresholding strategy
is not optimal for reconstructing the image in high quality: Regions with a small spatial variation
of the gray values are not represented at all in the interpolation set K, since their absolute value
of the Laplacian is below the threshold. This leads to fairly poor results.

Using the dithering strategy, however, gives a completely different interpolation set K. In
our case we have applied one of the most popular dithering algorithms, namely the classical error
diffusion method of Floyd and Steinberg [29]. It scans through all pixels, rounds the actual gray
value either to black (0) or white (255), depending on which value is closer. Then it distributes
the resulting error to the neighbors that have not been visited yet. Thus, the goal is to have a
dithered image with the same average gray value as the original one. If one wants to obtain a
dithered representation of |∆fσ| where e.g. 10 % of all pixels are white (255) and 90 % black (0),
one multiplies |∆fσ| with a constant such that its mean amounts to 0.1 · 255 = 25.5, and applies
Floyd-Steinberg dithering. In Figure 1(e) we observe that near edges where the modulus of the
Laplacian is large, more points are chosen, but the dithering strategy also guarantees that some
interpolation points are selected in relatively flat regions. The dithered interpolation set leads to
very good results as is shown in Figure 1(f). This confirms our theoretical considerations from the
Sections 4, 5, and 6.

8 Summary and Conclusions

We have analyzed the problem of finding optimal interpolation data for Laplacian-based interpo-
lation. To this end, we have investigated a number of shape optimization approaches, a level set
approach and an approximation theoretic reasoning. All theoretical findings emphasize the im-
portance of the Laplacian for appropriate data selection, either by thresholding the modulus of
the Laplacian or by interpreting it as a density for selecting the interpolation points. Numerical
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Figure 1: (a) Top left: Original image f , 257× 257 pixels. (b) Top center: |∆fσ| with σ = 1.
(c) Top right: Thresholding of (b) such that 10 % of the pixels remain as interpolation data.
(d) Bottom left: Interpolation using the “thresholded” set K from (c). (e) Bottom center:
Floyd-Steinberg dithering of (b) such that 10 % of all pixels are selected. (f) Bottom right:
Interpolation using the “dithered” set K from (e).

experiments clearly suggest to favor the density models.
It is our hope that our paper helps a little bit to make shape optimization tools more popular in

image processing, and to make researchers in shape optimization more aware of challenging image
processing problems. Both fields have a lot to offer to each other.
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