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Campus Scientifique, 73376 Le-Bourget-Du-Lac, France

Mathematical Institute of the Academy of Sciences of the Czech Republic
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1 Introduction

Recent developments in microfluidic and nanofluidic technologies have renewed inter-
est in the influence of surface roughness on the slip behavior of viscous fluids (see
the survey by PRIEZJEV and TROIAN [20] and the references cited therein). As
a matter of fact, this issue have been subjected to discussion for over two centuries
by many distinguished scientists who developed the foundations of fluid mechanics,
including Bernoulli, Coulomb, Navier, Couette, Poisson, Stokes, to name only a few.

Consider a viscous fluid confined to a domain Ω in the Euclidean physical space
R3, the boundary of which represents a solid wall. Assuming impermeability of the
wall we have

u · n = 0 on ∂Ω, (1.1)

where u is the fluid velocity and n stands for the (outer) normal vector to ∂Ω.
The mostly accepted hypothesis states there is no relative motion between a vis-

cous fluid and the solid wall ∂Ω, that means,

[u]τ = 0 on ∂Ω, (1.2)

where [u]τ stands for the tangential component of u, provided the wall is at rest. The
no-slip boundary condition expressed through (1.2), together with (1.1), have been
the most successful hypothesis in reproducing the velocity profiles for macroscopic
flows.
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In postulating his slip hypothesis, Navier suggested to replace (1.2) by

β[u]τ = [Sn]τ on ∂Ω, (1.3)

where S is the deviatoric viscous stress tensor and β is the friction coefficient. Note
that, formally, condition (1.3) reduces to (1.2) provided β → ∞. In the presence
of slip, the liquid motion is opposed by a force proportional to the relative velocity
between the fluid and the solid wall.

Although it is intuitively clear that (1.3) is much closer to the observed reality
than (1.2) whenever the rate of flow is sufficiently strong (turbulent regimes), there
has been a common believe that even if the Navier slip conditions were correct, the
corresponding slip length is likely to be too small to influence the motion of macro-
scopic fluids (for relevant discussion see Section 1 in PRIEZJEV and TROIAN [20]).

Recently, numerous experiments and simulations as well as theoretical studies have
shown that the classical no-slip assumption can fail when the walls are sufficiently
smooth (see PRIEZJEV et al. [19], QIANG and WANG [21], among others). Strictly
speaking, the slip length characterizing the contact between a fluid and a solid wall
in relative motion is influenced by many different factors, among which the intrinsic
affinity and commensurability between the liquid and solid molecular size as well as
the macroscopic surface roughness caused by imperfections and tiny asperities play a
significant role.

From the purely mathematical point of view, the Navier (partial) slip boundary
conditions yield a correct solution for problems on domains with sharp corners, where
the no-slip condition (1.2) yields spurious solutions (see DUSSAN [7], MOFFATT
[14]). Moreover, they are relevant on rough walls, where the presence of microscopic
asperities reduces considerably the shear-stress leading to a perfect slip on the bound-
ary (see JANSONS [12]). Given this perspective, there have been several attempts
to justify the no-slip boundary behavior (1.2) as an inevitable consequence of fluid
trapping by surface roughness. RICHARDSON [22] showed the no-slip emerges as the
effective boundary condition for a Stokes flow on domains with periodically undulated
boundary (for more general results see also JANSONS [12]). On the other hand, in
order to avoid the complicated description of the fluid behavior in a boundary layer
adjacent to a rough wall on which the no-slip condition (1.2) is imposed, the Navier
law (1.3) with a variable coefficient β is prescibed on the mean (flat) surface to facil-
itate numerical computations (see JAEGER and MIKELIC [11], MOHAMMADI et
al. [15]).

After a series of recent studies by AMIRAT et al. [1], [2], and CASADO-DÍAZ at
al. [6], it became clear that the mathematical problems involved are intimately related
to the pointwise behavior of Sobolev functions on “tiny” sets and may be studied
independently of any particular system of equations. Moreover, the weak convergence
methods involving the Young measures and their generalizations by GERARD [10]
and TARTAR [23] turned out to be a useful tool to describe the influence of roughness
on the effective boundary conditions [4], [5].

Conformably with the preferential setting used in many computational studies,
we consider a fluid between two horizontal surfaces periodic with respect to the plane
coordinates (x1, x2). More specifically, we consider a spatial domain Ω determined
through

Ω = {(x1, x2, x3) | (x1, x2) ∈ T 2, 0 < x3 < 1 + Φ(x1, x2)}, (1.4)

where the symbol T 2 = ((0, 1)|{0,1} stands for the two-dimensional torus. We denote
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the two components of the boundary ∂Ω as

Γbottom = {(x1, x2, 0) | (x1, x2) ∈ T 2 }, (1.5)

Γtop = {(x1, x2, x3) | (x1, x2) ∈ T 2 x3 = 1 + Φ(x1, x2)}. (1.6)

We assume that the bottom wall moves with a constant velocity V = (V1, V2, 0)
and that the fluid sticks to it, that means,

u|Γbottom = V. (1.7)

On the other hand, we assume impermeability of the upper wall

u · n|Γtop = 0, (1.8)

together with the Navier slip condition

β[u]τ = [Sn]τ
∣∣∣
Γtop

, (1.9)

where the coefficient β ≥ 0 may vary with the horizontal coordinates (x1, x2).
The viscous stress tensor S = S(D),

S : R3×3
sym → R3×3

sym

is a function of the symmetric velocity gradient

D[u] =
1
2

(
∇xu +∇t

xu
)
, (1.10)

satisfying the standard coercivity hypothesis

S(D) : D ≥ d1|D|p, d1 > 0, for all D ∈ R3×3
sym , (1.11)

together with a technical growth restriction

|S(D)| ≤ d2(1 + |D|p−1) for all D ∈ R3×3
sym , (1.12)

for a certain p ≥ 2. In addition, we require S to be strictly monotone:
(
S(D1)− S(D2)

)
:
(
D1 − D2

)
> 0 for any D1 6= D2. (1.13)

The best known example is the so-called linearly viscous fluid, where S is deter-
mined through Newton’s rheological law S = 2µD, p = 2. More examples as well as
the relevant mathematical background may be found in the monograph MÁLEK et
al. [13].

If the fluid is incompressible and in a stationary (time-independent) state, the
velocity u and the pressure p satisfy the Navier-Stokes system of equations

divx(u⊗ u) +∇xP = divxS(D[u]) + f in Ω, (1.14)

supplemented with the standard incompressibility constraint

divxu = 0. (1.15)
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Motivated by PRIEZJEV et al. [19], QIANG and WANG [21], we consider a family
of solutions {uε, pε}ε>0 of problem (1.14), (1.15), supplemented with the boundary
conditions (1.7 - 1.9), posed on spatial domains {Ωε}ε>0 given through (1.4) for
Φ = Φε. The functions Φε depend only on a single spatial variable, say, Φε = Φε(x1),
x1 ∈ T 1 = (0, 1)|{0,1}, mimicking a ribbed surface, with the amplitude and typical
wavelength of oscillations approaching zero for ε → 0.

We will show (see Theorem 3.1 below) that {uε, pε}ε>0 possesses a limit {u, p}
solving the Navier-Stokes system (1.14), (1.15) on the “flat” domain Ω = T 2 × (0, 1)
and satisfying the no-slip boundary conditions (1.7) on the bottom wall Γbottom. In
addition, the tangent velocity field [u]τ on the upper wall Γtop = {x3 = 1} is parallel
to the riblets direction, that means, [u]τ = (0, u2, 0), and satisfies a directional Navier
slip condition

β̃u2 = S2,3 on {x3 = 1}. (1.16)

The friction coefficient β̃ depends only on a weak limit of {βε}ε>0, and on σ -
a positive quantity which can be computed explicitly in terms of a Young measure
associated to horizontal deviations of the normals on ∂Ωε. In particular we show that
the concrete value and even shape of β̃ can be “tuned” choosing a specific distribution
of riblets on ∂Ωε as predicted for similar models by the molecular dynamics approach
(cf. PRIEZJEV et al. [19], QIANG and WANG [21]). In the particular case when
βε = β are constant, we get

β̃ > β

provided the amplitude and the frequency of oscillations of Γε
top are of the same order.

Our method is based on the concept of parametrized rugosity measure introduced
in [5], which is nothing other than a Young measure associated to the family of
gradients {∇Φε}ε>0. Furthermore, we exploit the well-developed theory of Sobolev
functions, in particular, the properties of their traces on the boundary. Accordingly,
we consider the weak (distributional) solutions to problem (1.14), (1.15). This so-
called variational approach seems inevitable in the present situation as all the refined
elliptic estimates yielding regularity of solutions are quite sensitive with respect to
the topology of the boundary. Last but not least, our approach leans on the pressure
estimates that can be obtained via a generalized inverse of the divx operator. One of
the fundamental issues addressed below is uniformity of these estimates with respect
to the parameter ε → 0.

The paper is organized as follows. In Section 2, we recall some preliminary ma-
terial, including the function spaces framework and a variational formulation of the
problem. The main result illustrated by several concrete examples is formulated in
Section 3. In Section 4, we introduce the concept of rugosity measure associated to
the family {Ωε}ε>0 in order to identify the boundary conditions to be satisfied in the
asymptotic limit for ε → 0. Section 5 is devoted to the basic properties of the so-called
Bogovskii operator div−1

x . The proof of the main result is completed in Section 6 by
means of the theory of monotone operators.

2 Preliminaries

To begin with, let us introduce the concept of variational solutions to the problem on
Ωε.

Definition 2.1 We shall say that functions uε ∈ W 1,p(Ωε; R3), Pε ∈ Lp′(Ωε),
1/p + 1/p′ = 1, represent a weak solution to the Navier-Stokes system (1.14), (1.15),

4



supplemented with the boundary conditions (1.7 - 1.9), if u satisfies (1.7), (1.8) in
the sense of traces, together with the incompressibility constraints (1.15) a.a. in Ωε,
and the integral identity

∫

Ωε

(
(uε ⊗ uε) : ∇x~ϕ + Pεdivx~ϕ

)
dx = (2.1)

∫

Ωε

S(D[uε]) : ∇x~ϕ dx +
∫

∂Ωε

βεuε · ~ϕ dσ −
∫

Ωε

f · ~ϕ dx

holds for any test function ~ϕ ∈ W 1,p(Ωε; R3) such that

~ϕ|Γbottom = 0, ~ϕ · n|Γε
top

= 0.

Note that we have tacitly assumed that the driving force f is defined on all domains
Ωε, say, f is a restriction of a fixed function belonging to the class L∞(R3;R3). Note
as well that, by means of the classical Krasnoselskii theorem, if S : R3×3

sym → R3×3
sym

is continuous, then the associated Nemytskii operator is continuous on the Lebesgue
space Lp(Ωε; R3×3

sym) with values in Lp′(Ωε; R3×3
sym) provided S satisfies hypothesis (1.12).

Finally, for the traces of Sobolev functions on Γε
top to be well defined, we have to

assume that Φε are Lipschitz functions on T 2.
Similarly, solutions of the limit problem are defined as follows.

Definition 2.2 A couple {u, P} is termed a weak solution to problem (1.14),
(1.15) on Ω = T 2 × (0, 1), supplemented with the boundary conditions (1.7), (1.8),
and

u1 = 0, β̃u2 = S(D[u])2,3 on Γtop = {x3 = 1} (2.2)

if u ∈ W 1,p(Ω; R3), P ∈ Lp′(Ω), u satisfies (1.7), u1 = u3 = 0 in the sense of traces
on Γtop, and the integral identity

∫

Ω

(
(u⊗ u) : ∇x~ϕ + Pdivx~ϕ

)
dx = (2.3)

∫

Ω

S(D[u]) : ∇x~ϕ dx +
∫

∂Ω

β̃u · ~ϕ dσ −
∫

Ω

f · ~ϕ dx

holds for any test function ~ϕ ∈ W 1,p(Ω; R3) such that

~ϕ|Γbottom = 0, ϕ1|Γtop = ϕ3|Γtop = 0.

A remarkable property of both (2.1) and (2.3) is that uε − Ṽ, u − Ṽ represent
respectively an admissible test function. This is, of course, related to the fact that
the “convective” terms uε ⊗ uε, u ⊗ u belong to the Lebesgue space Lp′ provided
p ≥ 9/5. Here, the symbol Ṽ denotes a suitable extension on Ω of the vector field V
appearing in the boundary condition (1.7). We can take

Ṽ = ψ(x3)V for ψ ∈ C∞[0, 1], ψ(0) = 1, ψ(1) = 0. (2.4)

In particular, the norm of Ṽ can be made arbitrarily small in the Lebesgue space
Lp′(Ω;R3) through a suitable choice of ψ.
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3 Main result

The main result of the present paper reads as follows:

Theorem 3.1 Let {Ωε}ε>0 be a family of domains given through (1.4) with Φ =
Φε(x1), where Φε are Lipschitz functions on T 1 such that

0 ≤ Φε ≤ ε, |Φ′ε| ≤ L on T 1, (3.1)

with the Lipschitz constant L independent of ε. Furthermore, assume that S : R3×3
sym →

R3×3
sym is a continuous mapping satisfying hypotheses (1.11 - 1.13), with p ≥ 2. Let

{uε, Pε}ε>0 ⊂ W 1,p(Ωε; R3)×Lp′(Ωε), p ≥ 2 be a family of weak solutions to problem
(1.14, 1.15; 1.7 - 1.9) specified in Definition 2.1. Finally, assume that

βε → β weakly-(*) in L∞(T 2), (3.2)

and
|Φ′ε| → |Φ′| weakly in L1(T 1), where |Φ′| > 0 a.a. on T . (3.3)

Then, passing to a suitable subsequence as the case may be, we have

uε → u in W 1,p(Ω;R3), Pε → P in Lp′(Ω), (3.4)

where {u, P} solve problem (1.14, 1.15; 1.7, 1.8, 2.2) on Ω in the sense of Definition
2.2, where

β̃ = L1 − weak lim
ε→0

βε

√
1 + |Φ′ε|2. (3.5)

Note that, in accordance with (3.2), (3.4), the friction coefficient β̃ for the limit
problem is always greatest that a weak limit of {βε}ε>0. Moreover,

β̃ > β whenever βε → β in L1(Ω). (3.6)

As Φε → 0 uniformly on T 1, we have

Φ′ε → 0 weakly-(*) in L∞(T 1), (3.7)

while hypothesis (3.3) requires the convergence in (3.7) not to be strong on any
subdomain of T 1. In other words, the oscillations of the normal vectors to Γε

top

persist in the asymptotic limit ε → 0.
A sufficient condition for (3.3) to hold reads

lim inf
ε→0

∫ b

a

|Φ′ε| dz ≥ r(b− a) for any a ≤ b, (3.8)

where r > 0 is a constant independent of ε. Observe that

∫ b

a

|Φ′ε| dz = Varb
a[Φε] = sup

a≤z1<...<zn≤b

n−1∑

i=1

|Φε(zi+1)− Φε(zi)|, (3.9)

where the most right expression corresponds intuitively to the degree of roughness of
Γε

top.
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Even more interesting example is provided by the co-area formula (see EVANS
and GARIEPY [8, Section 3.4.2, Theorem 1]):

∫ b

a

|Φ′ε| dz =
∫ ε

0

#[(a, b) ∩ Φ−1
ε (y)] dy, (3.10)

where #[(a, b)∩Φ−1
ε (y)] denotes the number of points x ∈ (a, b) (non-negative integer

or ∞) where Φε(x) = y, in other words, the number of points where the graph
(x, Φε(x)) intersects the straight line (x, y), x ∈ T 1.

Formulae (3.8 - 3.10) give rise to a number of examples listed below.

• Periodically oscillating boundaries: The most frequently studied situation
is taking

Φεk
(x1) = εkΦ

(x1

εk

)
, with

1
εk

a positive integer, (3.11)

where Φ ∈ W 1,∞(T 1). It is easy to check that

|Φ′ε| →
∫

T 1
|Φ′(z)| dz weakly in L1(T 1);

whence (3.3) holds unless Φ is constant.

• The crystalline case: Assume that Φ′ε ∈ K a.a. on T 1, where K ⊂ R1 is a
finite set 0 /∈ K. Then we can take

r = min
K
|Φ′ε| > 0

in (3.8) in order to conclude that (3.3) holds.

• The generalized crystalline case: As a matter of fact, we only need

ess inf
T 1
|Φ′ε| ≥ r > 0 for all ε > 0

to arrive at the same conclusion as in the previous case.

• Oscillatory boundaries: Assume that for any y1, y2 such that Φε(y1) =
Φε(y2) = 0, y1 < y2, there exists y3 ∈ (y1, y2) such that Φε(y3) = ε. In
agreement with (3.10), we get

∫ b

a

|Φ′ε| dz =
∫ ε

0

#[(a, b) ∩ Φ−1
ε (y)] dy ≥ ε#[x ∈ (a, b), Φε(x) = 0].

Consequently, the family {Φε}ε>0 satisfies (3.3) as soon as

lim inf
ε→0

{
ε#[x ∈ (a, b), Φε(x) = 0]

}
≥ r(b−a) for any a < b and a certain r > 0.

• Boundaries with asperities: A function A ∈ W 1,∞(T 1) is termed asperity
of amplitude h > 0 if

0 = min
T 1

A < max
T 1

A = h. (3.12)

Assume that
Φε =

∑

i

Aε
i ,
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where Aε
i are asperities such that supp[Ai] ∩ supp[Aj ] = ∅ for i 6= j.

It is easy to check that
∫ b

a

|Φ′ε| dz =
∫ ε

0

#[(a, b) ∩ Φ−1
ε (y)] dy ≥

∑

h

h #[asperities Aε
i of amplitude h, suppAε

i ∩ (a, b) 6= ∅],

where the sum contains at most countable number of terms. Consequently, in
order to obtain (3.3), we have to assume that

lim inf
ε→0

{ ∑

h

h #[asperities Aε
i of amplitude h, suppAε

i ∩ (a, b) 6= ∅]
}
≥ r(b− a)

for a certain r > 0.

The rest of the paper is devoted to the proof of Theorem 3.1.

4 Parametrized measures of rugosity

For the time being assume that we have already shown

sup
ε>0

∫

Ωε

(
|∇xuε|p + |uε|p

)
dx < ∞. (4.1)

Consequently, we can assume that

uε → u weakly in W 1,p(Ω;R3), (4.2)

where u satisfies the boundary condition (1.7) on Γbottom in the sense of traces.
To begin with, observe that the impermeability condition (1.1) is stable with

respect to a rather general families of converging domains {Ωε}ε>0. Note that (1.1)
can be restated in the form of an integral identity

∫

Ωε

(
uε · ∇xϕ− divxuεϕ

)
dx = 0 (4.3)

to be satisfied for any ϕ ∈ D(T 2 × (0,∞)). As a matter of fact, formula (4.3) makes
sense for all vector fields uε integrable on Ωε together with divxuε.

We get

0 =
∫

Ωε

(
uε · ∇xϕ− divxuεϕ

)
dx =

∫

Ωε\Ω

(
uε · ∇xϕ− divxuεϕ

)
dx +

∫

Ω

(
uε · ∇xϕ− divxuεϕ

)
dx,

where, up to a suitable subsequence,
∫

Ωε\Ω

(
uε · ∇xϕ− divxuεϕ

)
dx → 0 as ε → 0,

∫

Ωε

(
uε · ∇xϕ− divxuεϕ

)
dx →

∫

Ω

(
u · ∇xϕ− divxuϕ

)
dx = 0 for ε → 0
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provided
Ω ⊂ Ωε for all ε > 0, |Ωε \ Ω| → 0 for ε → 0. (4.4)

Thus we have shown the following assertion.

Lemma 4.1 Let {Ωε}ε>0 be a family of domains satisfying the hypotheses of Theorem
3.1. Moreover, let {uε}ε>0 be vector fields on Ωε satisfying (4.1), with p > 1, and
(4.3) for any ϕ ∈ D(T 2 × (0,∞)).

Then, passing to a subsequence as the case may be, we have

uε → u weakly in W 1,p(Ω;R3),

where u satisfies (4.3) on Ω for any ϕ ∈ D(T 2 × (0,∞)).

As the target domain Ω = T 2 × (0, 1) is smooth, the conclusion of Lemma 4.1
reads

u3|Γtop = 0 (4.5)

provided (4.1) holds.
Let us try to formulate, first intuitively, the meaning of rugosity of the surface

Γε in a certain (tangent) direction w. Very roughly indeed, one may say that such a
quantity should be proportional to probability that a normal vector to Γε is parallel
to w. Given a measurable set D ⊂ T 2 this can be expressed as

probε
D ≈ meas{y ∈ D | the normal vector at (y,Φε(y)) parallel to w}

meas(D)
.

However, the set of boundary points at which the normal is parallel to a single
vector w may be very small, in particular, its 2D-Hausdorff measure could be zero.
For this reason, it seems more convenient to replace w by a cone Cδ

w,

Cδ
w = {v | v ·w ≥ (1− δ)|v||w|}.

Accordingly, we take
probε

D ≈
meas{y ∈ D | the normal vector at (y, Φε(y)) belongs to Cδ

w}
meas(D)

and require this quantity to be positive uniformly with respect to ε → 0:

lim inf
ε→0

probε
D > 0 for any D ⊂ T 2. (4.6)

Formula (4.6) is reminiscent of the definition of the Young measure associated
to the family of normal vectors on Γε (see PEDREGAL [18, Chapter 1,Section 2]).
Motivated by the above discussion, we can define parametrized rugosity measure Ry,
y ∈ T 2 as a Young measure associated to the family {∇yΦε}ε>0, that means, Ry is
a probability measure on R2 defined as

< Ry, G >= G(∇yΦ)(y) for all G ∈ C(R2) and for a.a. y ∈ T 2,

where G(∇yΦ) stands for a weak limit of {G(∇yΦε)}ε>0 in L1(T 2) (see Section 3
in [5]). As a direct consequence of (3.7), the center of gravity associated to the
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parametrized rugosity measure Ry is always located at the origin. Note that the
vectors

(∇yΦε, 0) = (∇yΦε,−1)− (0, 0, 1) = nε − n,

express the deviations of the normal vector fields on Γε
top from the vertical direction.

A remarkable property of the parametrized rugosity measure is the following iden-
tity

u(y, 1) ·
( ∫

R2
G(Z)Z dRy(Z), 0

)
= 0 for all G ∈ C(R2) and a.a. y ∈ R2, (4.7)

where u is the weak limit appearing in (4.2). Indeed the impermeability condition
(1.1) written in terms of Φε reads

uε(y, 1 + Φε(y)) · (∇xΦε(y),−1) = 0 for a.a. y ∈ T 2,

in particular,
∫

T 2
ψ(y)G(Φε(y))uε(y, 1 + Φε(y)) · (∇xΦε(y),−1) dy = 0 (4.8)

for any G ∈ C(R2) and all ψ ∈ D(T 2). On the other hand
∫

T 2
|uε(y, 1 + Φε(y))− uε(y, 1)| dy ≤

∫

T 2

∫ 1+Φε(y)

1

|∇xuε(y, z)| dz dy

where the right-hand side tends to zero for ε → 0 as a consequence of (4.2). Conse-
quently, it follows from (4.8) that

lim
ε→0

∫

T 2
ψ(y)G(Φε(y))uε(y, 1) · (∇xΦε(y),−1) dy = 0 (4.9)

for any G ∈ C(R2) and all ψ ∈ D(T 2). As the trace operator uε ∈ W 1,p(Ω;R3) 7→
uε|{x3=1} is absolutely continuous with respect to the topology Lp({x3 = 1}), relation
(4.9) yields (4.7) (see also Lemma 7.1 in [5] for the case p = 2).

In particular, for the sequence of domains considered in Theorem 3.1, hypothesis
(3.3) gives rise to

suppRy ⊂ {(y1, 0), y1 ∈ R}, suppRy 6= (0, 0) for a.a. y ∈ T 2}. (4.10)

Thus combining (4.7), (4.10), together with (4.5) we conclude that, under the
hypotheses of Theorem 3.1,

u1|Γtop = u3|Γtop = 0 (4.11)

in accordance with (1.8), (2.2). However, the validity of (4.11) is conditioned by the
uniform bound anticipated in (4.1). After some preliminary material presented in
Section 5, a rigorous justification of (4.1) will be given in Section 6 below.

5 Equation divxv = g

5.1 Bogovskii’s operator

For the purposes of this part, we adopt a slightly more general situation than in
Theorem 3.1 assuming that Φε are effective functions of both variables (y1, y2) ∈ T 2

and replacing hypothesis (3.1) by

Φε ∈ W 1,∞(T2), 0 ≤ Φε ≤ ε, |∇xΦε| ≤ L, with L independent of ε > 0. (5.1)
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By virtue of (5.1), there exists ω > 0 independent of ε such that the interior of
the cone

(x1, x2, 1 + Φε(x1, x2)) +K, K = {(x1, x2, x3) | x3 ∈ (−1, 0), |(x1, x2)| < ω|x3|}

is contained in Ωε for any (x1, x2) ∈ T 2. Consequently, there is a finite number of
domains Ωk

ε , k = 1, . . . , m, such that

Ωε = ∪m
k=1Ω

k
ε ,

and each Ωk
ε is starshaped with respect to any point of a ball of a radius r > 0

contained in Ωk
ε , where both m and r can be chosen independent of ε (for the relevant

definition of a starshaped domain see Galdi [9, Chapter III.3]).
Consider an auxiliary problem: Given

g ∈ Lq(Ωε),
∫

Ωε

g dx = 0, 1 < q < ∞, (5.2)

find a vector field v = Bε[g] such that

v ∈ W 1,q
0 (Ωε; R3), divxv = g a.a. in Ωε. (5.3)

We report the following result (see Theorem 3.1 in Chapter III.3 in Galdi [9]).

Proposition 5.1 For each ε > 0 there is a solution operator Bε associated to problem
(5.2), (5.3) such that

‖ Bε[g] ‖W 1,q
0 (Ωε;R3) ≤ c(r,m, q)‖g‖Lq(Ωε), (5.4)

in particular, the norm of Bε is independent of ε.

Remark 5.1 The construction of the operator B used in [9] is due to Bogovskii
[3]. Clearly, the parameters r, m depend solely on the value of the Lipschitz constant
L in (5.1).

5.2 Korn’s inequality

The so-called Korn inequality yields a bound on the full velocity gradient ∇xu in
terms of its symmetric part D[u] introduced in (1.10). The uniform estimates stated
in Proposition 5.1 can be used in order to establish a version of Korn’s inequality
depending solely on the value of the Lipschitz constant L in (5.1). To this end, we
adapt the approach of NEČAS [16].

To begin with, we apply the standard Korn inequality on the domain Ω to obtain

‖v‖W 1,q(Ω;R3) ≤ c(q)‖ D[v] ‖Lq(Ω;R3×3
sym ) ≤ c(q)‖ D[v] ‖Lq(Ωε;R3×3

sym ) (5.5)

for any v ∈ W 1,q(Ωε;R3), q > 1 such that v|Γbottom = 0.
On the other hand, it is a routine matter to express

∇x(∂xivj) = Ai,jD[v] for any i, j, = 1, . . . , 3, (5.6)
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where Ai,j are linear differential operators of first order with constant coefficients.
By virtue of Proposition 5.1, any function h ∈ Lq′(Ωε), 1/q′ + 1/q = 1, of zero

integral mean can be expressed as a divergence of a vector field Bε[h] belonging to
W 1,q′

0 (Ωε, R
3). Consequently, we deduce from (5.6) that

‖∇xv‖Lq(Ωε;R3×3) ≤ c(q, L)
(
‖ D[v] ‖Lq(Ωε;R3×3

sym ) + ‖∇xv‖L1(Ωε;R3×3)

)
, q > 1, (5.7)

for any v as in (5.5).
Finally,

‖∇xv‖L1(Ωε;R3×3) = ‖∇xv‖L1(Ω;R3×3) + ‖∇xv‖L1(Ωε\Ω;R3×3), (5.8)

where, by means of Hölder’s inequality,

‖∇xv‖L1(Ωε\Ω;R3×3) ≤ |Ωε \ Ω|1/q′‖∇xv‖Lq(Ωε;R3×3). (5.9)

Combining estimates (5.5), (5.7 - 5.9) we infer that

‖∇xv‖Lq(Ωε;R3×3) ≤ c(q, L)‖ D[v] ‖Lq(Ωε;R3×3
sym ), 1 < q < ∞, (5.10)

for any
v ∈ W 1,q(Ωε;R3), v|Γbottom = 0, (5.11)

provided 0 < ε < εq,L is small enough.

Remark 5.1 The fact that the constant in Korn’s inequality depends only on L
was observed by NITSCHE [17] in the case q = 2.

6 Proof of Theorem 3.1

6.1 Uniform estimates

Our first goal is to establish bounds on the solutions uε, Pε independent of ε → 0. To
this end, we use the quantities uε− Ṽ as test functions in (2.1), where Ṽ is a suitable
extension of the boundary velocity field V introduced in (2.4). In accordance with
hypothesis (1.11), we get

d1‖ D[uε] ‖p

Lp(Ωε;R3×3
sym )

+
∫

∂Ωε

βε|uε|2 dσ ≤
∫

Ωε

S(D[uε]) : D[uε] dx+
∫

∂Ωε

βε|uε|2 dσ =

(6.1)∫

Ωε

(
f · (uε − Ṽ)− (uε ⊗ uε) : ∇xṼ + S(D[uε]) : D[Ṽ]

)
dx.

Seeing that
∫

Ωε

(uε ⊗ uε) : ∇xṼ dx = −
∫

Ωε

(uε ⊗ Ṽ) : ∇xuε dx =
∫

Ωε

(uε ⊗ Ṽ) : ∇x(uε − Ṽ) dx

we obtain
∣∣∣
∫

Ωε

(
f · (uε − Ṽ)− (uε ⊗ uε) : ∇xṼ + S(D[uε]) : D[Ṽ]

)
dx

∣∣∣ ≤ (6.2)

12



‖f‖L∞(Ωε;R3)‖uε − Ṽ‖L1(Ωε;R3)+

‖Ṽ‖L4(Ω;R3)‖uε − Ṽ‖L4(Ω;R3)‖∇x(uε − Ṽ)‖L2(Ω;R3×3)+

‖Ṽ‖2L4(Ω;R3)‖∇x(uε − Ṽ)‖L2(Ω;R3×3) + ‖∇xṼ‖L∞(Ω;R3)‖ S(D[uε])‖L1(Ω;R3×3
sym ),

while

‖ D[uε] ‖p

Lp(Ωε;R3×3
sym )

≥ 1
2

(
‖ D[uε] ‖p

Lp(Ωε;R3×3
sym )

+ ‖ D[uε − Ṽ] ‖p

Lp(Ωε;R3×3
sym )

)
− (6.3)

c(p)‖∇xṼ‖p
Lp(Ω;R3×3).

As already pointed out in (2.4), the extension Ṽ can be made arbitrarily small
in the Lebesgue space L4(Ω;R3). Consequently, it is possible to use estimates (6.1 -
6.3), hypothesis (1.12), together with Korn’s inequality (5.10) applied to v = uε− Ṽ,
in order to conclude that

sup
ε>0

∫

Ωε

|∇xuε|p + sup
ε>0

∫

∂Ωε

βε|uε|2 dσ < ∞, (6.4)

and, by virtue of (1.7),

sup
ε>0

∫

Ωε

|uε|p dx < ∞. (6.5)

Finally, taking ~ϕ = Bε[h] for h ∈ Lp(Ωε; R3) as a test function in (2.1) and using
(6.4), (6.5), together with Proposition 5.1, we obtain

sup
ε
‖Pε‖Lp′ (Ωε) < ∞ provided

∫

Ωε

Pε dx = 0. (6.6)

6.2 Weak convergence

Seeing that the family {uε}ε>0 satisfies (4.1) we may assume

uε → u weakly in W 1,p(Ω;R3), (6.7)

where, in accordance with (4.11), the limit vector field u satisfies the boundary con-
ditions

u|Γbottom = V, u1|Γtop = u3|Γtop = 0. (6.8)

Similarly, in agreement with (6.6)

Pε → P weakly in Lp′(Ω),
∫

Ω

P dx = 0. (6.9)

In order to perform the limit ε → 0 in the variational formula (2.1), observe first
that any test function for the target problem (2.3) may be used in (2.1) as well. Indeed
the class of functions

~ϕ = (ϕ1, ϕ2, ϕ3), ϕ1, ϕ3 ∈ D(Ω;R3), ϕ2 ∈ D(T 2 × (0,∞)), (6.10)

form a dense subset of test functions for (2.3) in W 1,p(Ω;R3).
Plugging a function ~ϕ satisfying (6.10) in (2.1) and letting ε → 0, we get

∫

Ω

(
(u⊗ u) : ∇x~ϕ + Pdivx~ϕ

)
dx = (6.11)
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∫

Ω

S(D[u]) : ∇x~ϕ dx + lim
ε→0

∫

∂Ωε

βεuε · ~ϕ dσ −
∫

Ω

f · ~ϕ dx,

where
S(D[u]) → S(D[u]) weakly in Lp′(Ω;R3×3

sym). (6.12)

In order to identify the limit of the boundary term, we write
∫

∂Ωε

βεuε · ~ϕ dσ =
∫

T 2
βε(y)uε(y, 1 + Φε(y)) · ~ϕ(y, 1 + Φε(y))

√
1 + |Φ′ε(y1)|2 dy,

(6.13)
where

uε(y, 1 + Φε(y))− uε(y, 1) =
∫ 1+Φε(y)

1

∂x3uε(y, z) dz for a.a. y ∈ T 2.

Thus by virtue of Jensen’s inequality, we get

∣∣∣uε(y, 1 + Φε(y))− uε(y, 1)
∣∣∣
2

≤ Φε(y)
∫ 1+Φε(y)

1

|∂x3uε(y, z)|2 dz;

whence ∫

T 2

∣∣∣uε(y, 1 + Φε(y))− uε(y, 1)
∣∣∣
2

dy ≤ ε

∫

Ωε

|∇xuε|2 dx. (6.14)

Relation (6.13), (6.14) give rise to
∫

∂Ωε

βεuε · ~ϕ dσ →
∫

∂Ω

β̃u · ~ϕ dy (6.15)

for any ~ϕ satisfying (6.10), where

β̃ = L1 − weak lim
ε→0

βε

√
1 + |Φ′ε|2, (6.16)

in complete agreement with (2.3), (3.5).

6.3 Strong convergence

In order to complete the proof of Theorem 3.1, it is enough to establish the strong
convergence of the velocity gradients as well as of the pressure as claimed in (3.4).
Note that as soon as this is achieved, we get S(D[u]) = S(D[u]), which converts (6.11)
to the desired identity (2.3).

To this end, we use the classical monotonicity argument. Note that, since p ≥
2 ≥ 9/5 we are allowed to use the quantity uε − Ṽ as a test function in (2.1), which
facilitates considerably the analysis.

Accordingly, we get
∫

Ωε

S(D[uε]) : ∇x(uε−Ṽ) dx+
∫

∂Ωε

βε|uε|2 dσ =
∫

Ωε

f ·uε dx−
∫

Ωε

(uε⊗uε) : ∇xṼ dx.

Letting ε → 0 and using (6.14) we have

lim
ε→0

∫

Ωε

S(D[uε]) : ∇xuε dx =
∫

Ω

f · u dx−
∫

Ω

(u⊗ u) : ∇xṼ dx+ (6.17)
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∫

Ω

S(D[uε]) : ∇xṼ dx−
∫

∂Ω

β̃|u|2 dσ.

On the other hand, setting ~ϕ = u − Ṽ in (6.11) we can compute the right-hand
side in (6.17) in order to conclude that

lim
ε→0

∫

Ωε

S(D[uε]) : ∇xuε dx =
∫

Ω

S(D[u]) : ∇xu dx, (6.18)

in particular,

lim
ε→0

∫

Ω

(
S(D[uε])− S(D[u])

)
:
(
D(uε)− D(u)

)
dx = 0. (6.19)

As S satisfies hypotheses (1.11 - 1.13), relations (6.18), (6.19) imply that

D[uε] → D[u] in Lp(Ω;R3×3
sym)

yielding
uε → u in W 1,p(Ω;R3). (6.20)

The last step is to establish the point-wise convergence of the pressure {Pε}ε>0.
To this end, we consider test functions of the form

~ϕε = B
[
|Pε|p

′−2Pε −
∫

Ω

|Pε|p
′−2Pε dx

]
,

where B is the Bogovskii operator constructed in Proposition 5.1 associated to Ω.
Note that, by virtue of (6.6),

|Pε|p
′−2Pε are bounded in Lp(Ω)

uniformly for ε → 0.
Similarly, we take

~ϕ = B
[
|P |p′−2P −

∫

Ω

|P |p′−2P dx
]
.

Using ~ϕε, ~ϕ as test functions in (2.1), (2.3, respectively, we conclude that

lim
ε→0

∫

Ω

|Pε|p
′
dx =

∫

Ω

P |P |p′−2P dx; (6.21)

whence
Pε → P in Lp′(Ω).

Theorem 3.1 has been proved.
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