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Abstract
For p ∈ (1,+∞) and b ∈ (0,+∞] the p-torsion function with Robin bound-
ary conditions associated to an arbitrary open set Ω ⊂ Rm satisfies for-
mally the equation −∆p = 1 in Ω and |∇u|p−2 ∂u

∂n
+ b|u|p−2u = 0 on ∂Ω.

We obtain bounds of the L∞ norm of u only in terms of the bottom of the
spectrum (of the Robin p-Laplacian), b and the dimension of the space in
the following two extremal cases: the linear framework (corresponding to
p = 2) and arbitrary b > 0, and the non-linear framework (corresponding
to arbitrary p > 1) and Dirichlet boundary conditions (b = +∞). In the
general case, p 6= 2, p ∈ (1,+∞) and b > 0 our bounds involve also the
Lebesgue measure of Ω.

Mathematics Subject Classification (2000): 35J25, 35P99, 58J35.

Keywords: Torsion function, Robin boundary conditions, p-Laplacian.
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1 Introduction

Let Ω be an open set in Euclidean space Rm with non-empty boundary ∂Ω, and
let the torsion function u : Ω→ R be the unique weak solution of

−∆u = 1, u|∂Ω = 0.

If Ω has finite measure the solution is obtained in the usual framework of the
Lax-Milgram theorem, while if Ω has infinite measure then 1 /∈ H−1(Ω) and u
is defined as the supremum over all balls of the torsion functions associated to
Ω ∩B.

The torsional rigidity is the set function defined by

P (Ω) =

∫
Ω

u. (1)

Since u ≥ 0 we have that P (Ω) takes values in the non-negative extended real
numbers, and that P (Ω) = ‖u‖L1(Ω), whenever u is integrable. Both the tor-
sion function and the torsional rigidity arise in many areas of mathematics, for
example in elasticity theory [2, 19, 23], in heat conduction [5], in the definition
of gamma convergence [8], in the study of minimal submanifolds [21] etc. The
connection with probability theory is as follows. Let (B(s), s ≥ 0;Px, x ∈ Rm)
be Brownian motion with generator ∆, and let

TΩ = inf {s ≥ 0: B(s) ∈ Rm \ Ω}

be the first exit time of Brownian motion from Ω. Then [24]

u(x) = Ex [TΩ] , x ∈ Ω.

Let λ be the bottom of the spectrum of the Dirichlet Laplacian acting in L2(Ω).
In [6, 7] it was shown that u ∈ L∞(Ω) if and only if λ > 0. If λ > 0 then

λ−1 ≤ ‖u‖L∞(Ω) ≤ (4 + 3m log 2)λ−1. (2)

Previous results of this nature were obtained in Theorem 1 of [3] for open,
simply connected, planar sets Ω. The question of the sharp constant in the
upper bound in the right hand side of (2) for these sets was addressed in [3, 4].

In this paper we consider the torsion function ub for the Laplacian with Robin
boundary conditions. The Robin Laplacian is generated by the quadratic form

Qb(u, v) =

∫
Ω

∇u.∇v + b

∫
∂Ω

uvdHm−1, u, v ∈W 1
2,2(Ω, ∂Ω),

where Hm−1 denotes the (m− 1)-dimensional Hausdorff measure on ∂Ω, and b
is a strictly positive constant. This quadratic form defined on W 1

2,2(Ω, ∂Ω) is
closed. The unique self-adjoint operator generated by Qb is the Robin Laplacian
which formally satisfies the boundary condition

∂u

∂n
+ bu = 0, x ∈ ∂Ω, (3)

where n denotes the outward unit normal, and ∂
∂n is the normal derivative. The

torsion function ub is the unique weak solution of −∆u = 1 with boundary
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condition (3). For convenience we put qb(u) = Qb(u, u). It is well known that
W 1

2,2(Ω) = W 1,2(Ω) if Ω is bounded and ∂Ω is Lipschitz. See [22] for details.
However, as all our results are for arbitrary open sets in Rm we will not rely
on this identity. We denote the bottom of the spectrum of the Robin Laplacian
acting in L2(Ω) by

λ(Ω, b) = inf{qb(u) : ‖u‖L2(Ω) = 1, u smooth in Ω}. (4)

The main results of this paper are the following.

Theorem 1. Let Ω be an open set in Rm,m = 2, 3, · · · . The torsion function
ub is bounded if and only if λ(Ω, b) > 0. In that case we have that

λ(Ω, b)−1 ≤ ‖ub‖L∞(Ω) ≤ 6mλ(Ω, b)−1 log
(

2113
√

3m(1 + b−1λ(Ω, b)1/2)
)
. (5)

For b → ∞ we have that λ(Ω, b) → λ, and we recover (2) with an albeit
worse constant. For b → 0 we have that λ(Ω, b) → 0. However, in the case
where Ω is a C0,1 domain it was shown in [17] that

lim
b→0

b−1λ(Ω, b) = |Ω|−1Hm−1(∂Ω), (6)

where |Ω| =
∫

Ω
1. (The upper bound in (6) follows by choosing the test function

u = |Ω|−1/2 in (4).) So for these domains b−1λ(Ω, b)1/2 � b−1/2, and the upper
bound in Theorem 1 has an extra factor log b compared with the Dirichlet regime
b→∞. It is unclear whether this additional log b factor is in fact sharp.

The proof of Theorem 1 depends very heavily on the availability of Gaussian
upper bounds for the Robin heat kernel. These were obtained in great generality
in [13]. We note that the estimates obtained in [12] and [14] for elliptic Robin
boundary value problems do not seem explicit enough to keep track of the
geometric data of Ω. The remainder of this paper is organised as follows. In
Section 2 we prove Theorem 1. In Section 3 we obtain some bounds for Robin
eigenfunctions in the case where Ω has finite measure.

In Section 4 we study the torsion function and torsional rigidity for the
p-Laplacian with Dirichlet and Robin boundary conditions respectively. In par-
ticular in Theorem 9 we will obtain an L∞ estimate for the torsion function of
the p-Laplacian with Dirichlet boundary conditions for an arbitrary open set
in terms of the corresponding spectral bottom. This extends the upper bound
in (2) for p = 2 to all p > 1. Moreover it extends the results of [11, Theorem
13] for convex sets to arbitrary open sets with finite or infinite measure. In the
very general case of the p-Laplacian with Robin boundary conditions, we obtain
L∞ bounds which hold only on open sets with finite measure, and the constant
involve the measure of Ω as well. This last result is probably not optimal, since
one may expect that the Lebesgue measure should not enter into the constant,
but we are not able to overcome a series of technical points.

2 Proof of Theorem 1

The main ingredient in the proof of Theorem 1 is a Gaussian bound for the
Robin heat kernel pb(x, y; t), x ∈ Ω, y ∈ Ω, t > 0, for arbitrary open sets Ω in
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Rm,m = 2, 3, · · · . In the special case where ∆ is the standard Laplacian and
b > 0 is constant on ∂Ω, Theorem 6.1 in [13] reads as follows.

For all 0 < ε ≤ 1 and for all x ∈ Ω, y ∈ Ω, t > 0

pb(x, y; t) ≤ C2m(αε)−mCmt−me−|x−y|
2/(4ω(1+ε)t),

where α = min{1, b}, and C2m and ω are constants depending on m only. C is
the constant which appears in the Nash inequality

‖u‖2+ 2
m

L2(Ω) ≤ Cq1(u)‖u‖
2
m

L1(Ω),

It is straightforward to trace the m-dependence of ω. We find that upon con-
sulting Lemma 6.3 and its proof in [13],

ω = 1 +m1/2 + 4m.

Similarly we find that using Corollary 5.3 and Lemma 5.7 and their proofs that

C2m = (192m)m. (7)

We can also verify that if Nb is a constant in the Nash inequality

‖u‖2+ 2
m

L2(Ω) ≤ Nbqb(u)‖u‖
2
m

L1(Ω), (8)

and if we choose ε = 1 then we infer, by the previous lines, that

pb(x, y; t) ≤ C2mNm
b t
−me−|x−y|

2/(8ωt). (9)

In Lemmas 2, 3, 4 and 5 below we prove the Nash inequality (8) with a constant
Nb depending upon b, λ(Ω, b) and m only. As a first step we shall consider only
open and bounded sets Ω with a smooth boundary. By a standard density
argument we obtain the full SBV -case in a second step.

Lemma 2. There exists a constant C(m) depending upon m only such that for
all v ∈ BV (Rm)

‖v‖Lm/(m−1)(Rm) ≤ C(m)|Dv|(Rm),

where |Dv|(Rm) is the total variation of v on Rm, and C(m) is the isoperimetric
constant given by

C(m) = m−1π−1/2(Γ((2 +m)/2))1/m. (10)

For a proof we refer to Theorem 3.4.7 in [1], or for an elementary proof with
(non-sharp) constant 1 instead of C(m) to Theorem 1 in Section 4.5.1 in [16].

Lemma 3. Let Ω be an open bounded set in Rm and with smooth boundary,
and let u ∈ H1(Ω). Then

‖u‖2L2m/(m−1)(Ω) ≤ C(m)

(
2

∫
Ω

|u||∇u|+
∫
∂Ω

u2dHm−1

)
.
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Proof. Let u ∈ H1(Ω) and observe that u2 ∈ BV (Rm). In fact we have that
u2 ∈ SBV (Rm), where u is extended by 0 on Rm \Ω. Indeed u2 ∈ L1(Rm) and
for any open set A ⊂ Rm,

Du2(A) = 2

∫
A

u∇u+

∫
∂Ω∩A

u2−→n dHm−1.

So

|Du2|(Rm) ≤ 2

∫
Ω

|u||∇u|+
∫
∂Ω

u2dHm−1.

By Lemma 2

‖u2‖Lm/(m−1)(Ω) ≤ C(m)

(
2

∫
Ω

|u||∇u|+
∫
∂Ω

u2dHm−1

)
,

which implies the lemma.

Lemma 4. For all b > 0 and all u ∈ H1(Ω),

‖u‖2L2m/(m−1)(Ω) ≤ C(m)

(
1

b
+

b

λ(Ω, b)

)
qb(u), (11)

and for all b ≥ λ(Ω, b)1/2 and u ∈ H1(Ω),

‖u‖2L2m/(m−1)(Ω) ≤ 2C(m)λ(Ω, b)−1/2qb(u). (12)

Proof. In order to prove (12) we use Cauchy-Schwarz and obtain that

2

∫
Ω

|u||∇u| ≤ b−1

∫
Ω

|∇u|2 + b

∫
Ω

u2. (13)

So by Lemma 3

‖u‖2L2m/(m−1)(Ω) ≤ C(m)

(
b−1

∫
Ω

|∇u|2 + b

∫
Ω

u2 +

∫
∂Ω

u2dHm−1

)
≤ C(m)b−1

(
qb(u) + b2

∫
Ω

u2

)
≤ C(m)b−1

(
qb(u) + b2λ(Ω, b)−1qb(u)

)
, (14)

which yields (11). In order to prove (12) we replace b by λ(Ω, b)1/2 in (13) and
(14) respectively. This gives that

‖u‖2L2m/(m−1)(Ω) ≤ 2C(m)λ(Ω, b)−1/2qλ(Ω,b)1/2(u) ≤ 2C(m)λ(Ω, b)−1/2qb(u),

by monotonicity of b 7→ qb.

Finally we obtain the following Nash inequality.

Lemma 5. For all u ∈ H1(Ω) we have that

‖u‖2+ 2
m

L2(Ω) ≤ Nbqb(u)‖u‖
2
m

L1(Ω),

where

Nb =

{
C(m)(b−1 + λ(Ω, b)−1b) , b > 0,

2C(m)λ(Ω, b)−1/2 , b ≥ λ(Ω, b)1/2.
(15)
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Proof. The lemma follows by Lemma 4 and the following interpolation inequal-
ity

‖u‖L2(Ω) ≤ ‖u‖
m/(m+1)

L2m/(m−1)(Ω)
‖u‖1/(m+1)

L1(Ω) .

For non-smooth Ω one can follow the same arguments if instead of the
Sobolev traces we consider u2 ∈ SBV (Rm), and pointwise traces, or the Mazya
trace (which has a priori higher L2 norm). See page 940 lines -10 to -1 and page
941 lines 1 to 6 in [10].

In the lemma below we will use the heat equation techniques from [6] that
were used to obtain bounds for the torsion function with Dirichlet boundary
conditions. We abbreviate K = C2mNm

b .

Lemma 6. Suppose that λ(Ω, b) > 0 and that (9) holds. Let T > 0 be arbitrary.
Then the torsion function with Robin boundary conditions satisfies

‖u‖L∞(Ω) ≤ T + 2−1(256πω)m/2Kλ(Ω, b)−1T−m/2e−Tλ(Ω,b)/4.

Proof. First note that Lemma 1 in [6] holds for heat kernels with Robin bound-
ary conditions. By choosing β = 1/2 in that lemma we obtain that

pb(x, x; t) ≤ e−tλ(Ω,b)/2 pb
(
x, x; t/2).

Next note that by the heat semigroup property and the Cauchy-Schwarz in-
equality

pb(x, y; t) =

∫
Ω

pb(x, z; t/2) pb(z, y; t/2)dz

≤
(∫

Ω

pb(x, z; t/2)2dz

)1/2(∫
Ω

pb(z, y; t/2)2 dz

)1/2

= (pb(x, x; t) pb(y, y; t))1/2.

So putting the above two estimates together with (9) gives that

pb(x, y; t) ≤ (pb(x, y; t))1/2(pb(x, x; t)pb(y, y; t))1/4

≤ K2m/2e−tλ(Ω,b)/4t−me−|x−y|
2/(16ωt).

We obtain that, by extending the region of integration to all of Rm,∫
Ω

dypb(x, y; t) ≤ K(32πω)m/2t−m/2e−tλ(Ω,b)/4,

and∫
[T,∞)

dt

∫
Ω

dypb(x, y; t) ≤ 4(32πω)m/2Kλ(Ω, b)−1T−m/2e−Tλ(Ω,b)/4

≤ 2−1(256πω)m/2Kλ(Ω, b)−1T−m/2e−Tλ(Ω,b)/4. (16)

Furthermore

v(x; t) =

∫
Ω

dypb(x, y; t)
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is the solution of ∆v = ∂v
∂t with initial condition v(x; 0) = 1 and Robin boundary

conditions. By the maximum principle we have that 0 ≤ v(x; t) ≤ 1. Hence∫
[0,T ]

dt

∫
Ω

dypb(x, y; t) ≤ T,

and the lemma follows by (16) since the torsion function can be represented by

u(x) =

∫
[0,∞)

dt

∫
Ω

dypb(x, y; t).

Proof of Theorem 1. We choose T to be the unique positive root of

(256πω)m/2Kλ(Ω, b)−1T−m/2e−Tλ(Ω,b)/4 = T. (17)

We rewrite this, using the numerical value of K, as follows.

(Tλ(Ω, b))(2+m)/2eTλ(Ω,b)/4 = (22032m2N 2
b λ(Ω, b)πω)m/2. (18)

It is easily seen that N 2
b λ(Ω, b) ≥ 1 for all b and all λ(Ω, b), and that the right

hand side of (18) is at least e1/4. We conclude that Tλ(Ω, b) ≥ 1. Hence
eTλ(Ω,b)/4 ≤ (22032m2N 2

b λ(Ω, b)πω)m/2, and

T ≤ 2mλ(Ω, b)−1 log(22032m2N 2
b λ(Ω, b)πω). (19)

By Lemma 6, (17) and (19) we find that

‖u‖L∞(Ω) ≤ 3mλ(Ω, b)−1 log(22032m2N 2
b λ(Ω, b)πω). (20)

To estimate the numerical constant under the log in the right hand side of (20)
we first note that by (15),

N 2
b λ(Ω, b) ≤ 4C2(m)

(
1 + b−1λ(Ω, b)1/2

)2

. (21)

By (10), (20), (21) and the bounds ω ≤ 6m and (Γ((2 + m)/2))2/m ≤ m/2 we
find that

‖u‖L∞(Ω) ≤ 3mλ(Ω, b)−1 log
(

22233m2(1 + b−1λ(Ω, b)1/2)2
)
.

This completes the proof of the right hand side in (5).
To prove the lower bound in (5) we let B(p,R) = {x : |x − p| < R},

ΩR = Ω ∩ B(p,R), and we denote by pb,R(x, y; t) the heat kernel with Robin
boundary conditions on (∂Ω) ∩ B(p,R) and Dirichlet boundary conditions on
(∂ΩR) \ ((∂Ω) ∩ B(p,R)). The region ΩR has finite volume and the spectrum
of the Laplacian with the corresponding mixed boundary conditions is discrete.
Denote the first eigenvalue by λ̃(ΩR, b) with corresponding eigenfunction φ̃b,R.
In Proposition 8 below we will see that the first Robin eigenfunction on an open
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set with finite Lebesgue measure is bounded. Following the proof of Proposition
8 we will show that φ̃b,R is also bounded. We then have that

ub,R(x) =

∫
[0,∞)

dt

∫
Ω

dypb,R(x, y; t)

≥
∫

[0,∞)

dt

∫
Ω

dypb,R(x, y; t)
φ̃b,R(y)

‖φ̃b,R‖L∞(ΩR)

=

∫
[0,∞)

dte−tλ̃(ΩR,b)
φ̃b,R(x)

‖φ̃b,R‖L∞(ΩR)

= λ̃(ΩR, b)
−1 φ̃b,R(x)

‖φ̃b,R‖L∞(ΩR)

. (22)

Taking first the supremum over all x ∈ ΩR in the left hand side of (22), and
subsequently the supremum over all x ∈ ΩR in the right hand side of (22) gives
that

‖ub,R‖L∞(ΩR) ≥ λ̃(ΩR, b)
−1. (23)

Taking first the limit R→∞ followed by the same limit in the right hand side
of (23) yields the lower bound in (5). This completes the proof of Theorem 1.

3 Robin eigenfunctions

In this section we obtain some estimates for eigenfunctions of the Robin Lapla-
cian.

Proposition 7. Let Ω be an open set in Rm with finite measure |Ω|, and suppose
that λ(Ω, b) > 0. Then the spectrum of the Robin Laplacian acting in L2(Ω) is
discrete and for all t > 0

∞∑
j=1

e−tλj(Ω,b) ≤ C2mNm
b |Ω|t−m, (24)

where C2m and Nb are the constants in (7) and (15) respectively and {λj(Ω, b) :
j ∈ N} are the eigenvalues of the Robin Laplacian. Note that λ(Ω, b) = λ1(Ω, b)
in this case.

Proof. Integrating the diagonal element of the heat kernel over Ω shows that
the Robin heat semigroup is trace class. Hence the Robin spectrum is discrete
and this in turn implies (24).

It is well known that upper bounds on the heat kernel imply bounds for
eigenfunctions. See Example 2.1.8 in [15]. The following below is another such
instance.

Proposition 8. Let Ω be an open set in Rm with finite measure |Ω|, and suppose
that λ(Ω, b) > 0. Let {φj : j ∈ N} denote an orthonormal set of eigenfunctions
corresponding to the eigenvalues in Proposition 7. Then φj ∈ L1(Ω) ∩ L∞(Ω)
and for all j ∈ N

‖φj‖L∞(Ω) ≤ (C2mNm
b e

mm−m)1/2λj(Ω, b)
m/2. (25)
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Proof. By Cauchy-Schwarz and orthonormality we have that ‖φj‖L1(Ω) ≤ |Ω|1/2.
Since |Ω| <∞ the heat semigroup is trace class, and so

e−tλj(Ω,b)φ2
j (x) ≤

∞∑
j=1

e−tλj(Ω,b)φ2
j (x) ≤ C2mNm

b t
−m.

Hence
|φj(x)|2 ≤ C2mNm

b e
tλj(Ω,b)t−m. (26)

Taking the supremum over all x ∈ Ω in the left hand side of (26) followed by
taking the infimum over all t > 0 in the right hand side gives the bound in
(25).

To see that φ̃b,R, defined above (22), is bounded we note that by (5),
pb,R(x, y; t) ≤ pb(x, y; t) ≤ C2mNm

b t
−m. So e−tλ(ΩR,b)φ2

b,R(x) ≤ pb,R(x, x; t) ≤
C2mNm

b t
−m. This shows that φb,R is bounded.

We note that the L∞ estimate in (25) together with (22) implies the following
comparison estimate between torsion function and first eigenfunction.

ub(x) ≥ (C2mNm
b e

mm−m)−1/2λ(Ω, b)−1−m2 φ1(x). (27)

For b ≥ λ(Ω, b)1/2 we use the second inequality in (15) to obtain that

ub(x) ≥ Cλ(Ω, b)−1−m4 φ1(x),

for some constant C depending on m only. This jibes with Theorem 5.1 in
[7]. In general one cannot expect however, that ub and φ1 are comparable. See
Theorem 6 and the discussion in Section 3 in [7]. Similarly Theorem 1 and
Proposition 8 show that for b ≥ λ(Ω, b)1/2,

‖um/4b φ1‖L∞(Ω) ≤ C ′,

where C ′ depends on m only. This jibes with Theorem 5.2 in [7], and completes
the analogy with the Dirichlet case in this regime.

4 Torsion Function and torsional rigidity for the
p-Laplacian

4.1 Dirichlet boundary conditions

In this section we consider the p-Laplacian for 1 < p < +∞ with Dirichlet
boundary conditions, corresponding formally to b = +∞. Let Ω be an open and
bounded set of Rm and wΩ (or simply w) the torsion function of the p-Laplacian
with Dirichlet boundary conditions. It is the unique solution of

min
u∈W 1,p

0 (Ω)

1

p

∫
Ω

|∇u|p −
∫

Ω

u.

Let

λ := min{
∫

Ω
|∇u|p∫

Ω
|u|p

: u ∈W 1,p
0 (Ω) \ {0}}
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be the first eigenvalue of the p-Laplacian with Dirichlet boundary conditions
on Ω.

These notions extend to every open set, not necessarily bounded, by replac-
ing the torsion function and the first eigenvalue with suitable definitions on
unbounded sets. The first eigenvalue has to be replaced by the spectral bot-
tom, and the torsion function by the following Borel function (possibly infinite
valued) obtained by inner approximations

wΩ(x) = sup
R>0

wΩ∩B(0,R)(x).

We shall prove the following.

Theorem 9. There exists a constant Cm,p such that for any open set Ω ⊆ Rm

‖w‖L∞(Ω) ≤ Cm,pλ−
1
p−1 . (28)

Theorem 9 extends the inequality obtained in [6] and [7] to the p-Laplacian,
for which we give an elliptic proof. We refer the reader to [11, Theorem 13],
where this inequality is proved for convex sets.
Proof of Theorem 9. It is enough to consider a smooth, bounded open set Ω
and approach a general open set with an increasing sequence of smooth inner
sets. We extend the torsion function w to all of Rm by 0, and denote the new
function again by w. Then w satisfies

−∆pw ≤ 1,

in the sense that

∀ϕ ∈ C∞c (Rm), ϕ ≥ 0,

∫
Rm
|∇w|p−2∇w∇ϕ ≤

∫
Rm

ϕ. (29)

We prove the following Cacciopoli type inequality.

Lemma 10. For every c1 > 2p−1 there exists c2 depending on c1, m and p such
that for every θ ∈W 1,∞(Rm) we have∫

Rm
|∇(wθ)|p ≤ c1

∫
Rm

w|θ|p + c2

∫
Rm
|∇θ|pwp.

Proof. Without loss of the generality, we may assume that θ ≥ 0. By taking
ϕ = wθp as a test function in (29) it suffices to prove that∫

Rm
|∇(wθ)|p ≤ c1

∫
Rm
|∇w|p−2∇w∇(w|θ|p) + c2

∫
Rm
|∇θ|pwp.

Since ∫
Rm
|∇(wθ)|p ≤ 2p−1

∫
Rm

(|∇w|pθp + |∇θ|pwp) ,

and ∫
Rm
|∇w|p−2∇w∇(w|θ|p) =

∫
Rm
|∇w|pθp + p

∫
Rm
|∇w|p−2∇w∇θθp−1w

10



it suffices to prove that

−pc1
∫
Rm
|∇w|p−2∇w∇θ θp−1w

≤ (c1 − 2p−1)

∫
Rm
|∇w|pθp + (c2 − 2p−1)

∫
Rm
|∇θ|pwp,

or even∫
Rm
|∇w|p−1θp−1|∇θ|w ≤ c1 − 2p−1

pc1

∫
Rm
|∇w|pθp +

c2 − 2p−1

pc1

∫
Rm
|∇θ|pwp.

This last inequality is a consequence of Young’s inequality, for c2 given by

c2 = 2p−1 + c1

( (p− 1)c1
c1 − 2p−1

)p−1

.

In order to get a pointwise bound of w in terms of the average of w on balls,
we recall the following result from [20] (see also [25]).

Lemma 11. Let p ∈ (1,m] and u ∈ W 1,p(Rm), u ≥ 0 and −∆pu ≤ 1. Let

γ ∈ (p − 1, N(p−1)
N−(p−1) ). Then there exist two constants C,C ′ independent of u

such that

u(0) ≤ C
(∫

B(0,1)

uγ
) 1
γ

+ C ′.

Proof. This is a consequence of [20, Theorem 3.3].

We now continue our proof of Theorem 9. Clearly, by re-scaling we get that

u(0) ≤ C
( 1

rm

∫
B(0,r)

uγ
) 1
γ

+ C ′r
p
p−1 .

We shall choose γ ∈ (p−1, p), close to p−1. For such a γ we have by Hölder’s
inequality ( 1

rm

∫
B(0,r)

uγ
) 1
γ ≤

( 1

rm

∫
B(0,r)

up
) 1
p

ω
1− γp
m .

So changing the constant C we have for p ∈ (1,m]

u(0) ≤ C
( 1

rm

∫
B(0,r)

up
) 1
p

+ C ′r
p
p−1 . (30)

If p > m, this inequality holds as well. This is a consequence of the continu-
ous embedding of W 1,p(B1(0)) in L∞(B1(0)) and of Lemma 10. Indeed, from
Lemma 10, there exist constants (which may change from line to line) such that∫

B(0,1/2)

|∇u|p ≤ c1
∫
B(0,1)

u+ c2

∫
B(0,1)

up

≤ C
∫
B(0,1)

up + C ′.

11



On the other hand

‖u‖L∞(B(0,1/2)) ≤ C‖u‖Lp(B(0,1/2)) + C‖∇u‖Lp(B(0,1/2)),

so that
‖u‖L∞(B(0,1/2)) ≤ C‖u‖Lp(B(0,1)) + C ′.

By re-scaling, we obtain inequality (30).
Let now θ ∈ C∞c (B2(0), 0 ≤ θ ≤ 1, θ ≡ 1 on B1(0). Let θR(x) = θ( xR ).

Then wθ ∈W 1,p
0 (Ω), so

λ(Ω) ≤

∫
Ω

|∇(wθ)|p∫
Ω

wpθp

and from Lemma 10

λ(Ω) ≤
c1

∫
Ω

wθp + c2

∫
Ω

|∇θ|pwp∫
Ω

wpθp
.

Using inequality (30) we have for R small enough

Rm

Cp

(
w(0)− C ′R

p
p−1

)p
≤
∫
B(0,R)

wp.

At the same time∫
B(0,2R)

θpR ≤ ωm2mRm and

∫
B(0,2R)

|∇θR|p ≤ C ′′Rm−p.

As a consequence, renaming constants, we get

λ(Ω) ≤ Cw(0)Rm + C ′w(0)pRm−p

Rm
(
w(0)− C ′′R

p
p−1

)p .

We choose R such that
w(0) = 2C ′′R

p
p−1 ,

and so

λ(Ω) ≤ C̃

Rp
=

2p−1C ′′p−1C̃

w(0)p−1
,

where

C̃ =
2CC ′′ + (2C ′′)pC ′

C ′′p
.

This concludes the proof of inequality (28). �
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4.2 Robin boundary conditions

The p-torsion function with Dirichlet boundary conditions on the ball B(0, R)
is given by

u(x) = (p− 1)p−1m−(p−1)−1

(Rp/(p−1) − |x|p/(p−1)), |x| < R.

Hence the solution is bounded, positive and regular. It follows by the comparison-
and regularity theorems that if Ω ⊂ B(0, R) then the p-torsion function for Ω
with Dirichlet boundary conditions satisfies

‖u‖L∞(Ω) ≤ (p− 1)p−1m−(p−1)−1

Rp/(p−1).

See [11] and the references therein. In this section we obtain some results for
the p-torsion function with Robin boundary conditions and the corresponding
torsional rigidity.

Let p > 1 and Ω ⊂ Rm be an open set of finite measure. We introduce the
torsion function for the p-Laplacian with Robin boundary conditions relaying on
the W 1

p,p(Ω, ∂Ω)-spaces (see [22]). All results of this section can be rephrased in
the framework introduced in [10], where the Robin problem in non-smooth sets
is defined by using the SBV - spaces (see Remark 1 at the end of the section).

The torsion function ub is the unique weak solution of

−∆pu = 1 in Ω, |∇u|p−2 ∂u

∂n
+ b|u|p−2u = 0 on ∂Ω,

which is the minimizer in W 1
p,p(Ω, ∂Ω) of the energy

v 7→
∫

Ω

|∇v|p + b

∫
∂Ω

|v|pdHm−1 − p
∫

Ω

v. (31)

Let us notice that u is non-negative and continuous in Ω. We introduce
the family of open sets Ut = {u > t, t ≥ 0} and denote by λ(Ω, b) the first
Robin eigenvalue for the open set Ω associated to the Robin constant b, which
is defined as

λ(Ω, b) = inf
{∫

Ω
|∇v|p + b

∫
∂Ω
|v|pdHm−1∫

Ω
|v|p

: v ∈W 1
p,p(Ω, ∂Ω), v 6= 0

}
. (32)

Throughout this section we suppress the p-dependence of the first Robin eigen-
value, torsion function etc. The isoperimetric inequality for the first eigenvalue
of the Robin p-Laplacian in a non-smooth setting (see [10]) states that

λ(Ut, b) ≥ λ(U∗t , b), (33)

where we adopt the usual notation: for any measurable setA with finite Lebesgue
measure A∗ stands for the ball of measure |A| centered at 0.

Let us define the constants

c1 =
m

m(p− 1) + 1
,

c2 = p
m

m(p−1)+1 (m(p− 1) + 1),
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c3 =
1

(p− 1)(m(p− 1) + 1)
,

h(t) =
|Ω| 1

m

|Ut|
1
m

.

We put U ]t = h(t)Ut so that |U ]t | = |Ω|. We prove the following result.

Theorem 12. For every open set of finite measure, the torsion function ub
belongs to L∞(Ω) and∫ ‖ub‖L∞(Ω)

0

(
h(t)p−1λ(Ω∗,

b

h(t)p−1
)

)c1
dt ≤ c2

λ(Ω, b)c3
. (34)

In the proof of Theorem 12 we will need the following.

Lemma 13. Let B be any open ball in Rm with finite Lebesgue measure. Then

lim
α↓0

λ(B, bα)

α
= mb.

Proof. Let u be the first normalized eigenfunction on B(0, 1). The mapping

[0, 1] 3 r 7→ b(r) = |∇u(r)|p−1

u(r)p−1 is increasing and continuous (see for instance [9,

Proposition 4.2]). Moreover, we have

λ(B(0, r), b(r)) = λ(B(0, 1), b).

By re-scaling we get that

1

rp
λ(B(0, 1), b(r)rp−1) = λ(B(0, 1), b),

so that
1

b(r)rp−1
λ(B(0, 1), b(r)rp−1) =

r

b(r)
λ(B(0, 1), b).

It remains to prove that

lim
r↓0

r

b(r)
λ(B(0, 1), b) =

Hm−1(∂B(0, 1))

|B(0, 1)|
.

Multiplying the identity −∆pu = λ(B(0, 1), b)|u|p−2u with u and integrating on
B(0, r) we get∫

B(0,r)

|∇u|p + b(r)

∫
∂B(0,r)

|u|pdHm−1 = λ(B(0, 1), b)

∫
B(0,r)

|u|p.

Dividing by rm and passing to the limit r ↓ 0, we get

lim
r↓0

b(r)

r
Hm−1(∂B(0, 1))|u(0)|p = λ(B(0, 1), b)|u(0)|p|B(0, 1)|,

where we have used that ∇u(0) = 0 and u(0) 6= 0 by the regularity of u inside
the ball.
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Lemma 13 above extends (5) to the p-Laplacian with Robin boundary con-
ditions in the special case of a ball.
Proof of Theorem 12. As usual in the search of L∞ estimates, we choose u∧t :=
min{u, t} as a test function in (31). We have that∫

Ω

|∇u|p + b

∫
∂Ω

|u|pdHm−1 − p
∫

Ω

u

≤
∫

Ω

|∇(u ∧ t)|p + b

∫
∂Ω

|u ∧ t|pdHm−1 − p
∫

Ω

(u ∧ t).

But ∫
Ω

|∇(u ∧ t)|p =

∫
{0<u<t}

|∇u|p =

∫
Ω

|∇u|p −
∫
Ut

|∇u|p,∫
Ω

(u ∧ t) =

∫
Ω\Ut

u+

∫
Ut

t =

∫
Ω

u−
∫

Ω

(u− t)+,

and ∫
∂Ω

|u ∧ t|pdHm−1 =

∫
∂Ω∩{0<u<t}

|u|pdHm−1 +

∫
∂Ω∩{u≥t}

tpdHm−1

=

∫
∂Ω

|u|pdHm−1 −
∫
∂Ω∩{u≥t}

(|u|p − tp)dHm−1

=

∫
∂Ω

|u|pdHm−1 −
∫
∂Ut

(|u|p − tp)dHm−1.

This last equality is a consequence of the fact that for every x ∈ ∂Ut ∩ Ω, we
have (from the continuity of u) that u(x) = t. Finally,∫

Ut

|∇(u− t)+|p + b

∫
∂Ut

(|(u− t)+ + t|p − tp)dHm−1 ≤ p
∫
Ut

(u− t)+,

so that by the definition of the first Robin eigenvalue

λ(Ut, b)

∫
Ut

|(u− t)+|p ≤
∫
Ut

|∇(u− t)+|p + b

∫
∂Ut

|(u− t)+|pdHm−1

≤ p
∫
Ut

(u− t)+.

Let f(t) =
∫
Ut

(u− t)+, t ≥ 0, then Hölder’s inequality gives that

λ(Ut, b)f(t)p
1

|Ut|
p
p′
≤ pf(t).

Equivalently, introducing the re-scaling of Ut, we get that

f(t)p−1h(t)pλ(U ]t ,
b

h(t)p−1
) ≤ p|Ut|p−1,

or

f(t)p−1h(t)p−1λ(U ]t ,
b

h(t)p−1
)|Ω| 1

m ≤ p|Ut|p−1+ 1
m .
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Since f ′(t) = −|Ut|, we get that

|Ω|
1

m(p−1)+1

p
m

m(p−1)+1

[
h(t)p−1λ(U ]t ,

b

h(t)p−1
)
] m
m(p−1)+1 ≤ − f ′(t)

f(t)
m(p−1)
m(p−1)+1

.

Integrating this differential inequality between 0 and some value T < ‖u‖L∞(Ω),
we get that

|Ω|
1

m(p−1)+1

p
m

m(p−1)+1

∫ T

0

(
h(t)p−1λ(U ]t ,

b

h(t)p−1
)

) m
m(p−1)+1

dt

≤ (m(p− 1) + 1)(f(0)
1

m(p−1)+1 − f(T )
1

m(p−1)+1 ).

By the isoperimetric inequality (33) and the positivity of f we obtain that

|Ω|
1

m(p−1)+1

p
m

m(p−1)+1

∫ T

0

(
h(t)p−1λ(Ω∗,

b

h(t)p−1
)

) m
m(p−1)+1

dt

≤ (m(p− 1) + 1)f(0)
1

m(p−1)+1 . (35)

Since

‖ub‖L1(Ω) =

∫
Ω

|∇ub|p + b

∫
∂Ω

|ub|pdHm−1

≥ λ(Ω, b)‖ub‖pLp(Ω)

≥ λ(Ω, b)
‖ub‖pL1(Ω)

|Ω|p−1
, (36)

we have that

‖ub‖L1(Ω) ≤
|Ω|

λ(Ω, b)
1
p−1

. (37)

By (35), (36), (37) and the fact that f(0) = ‖u‖L1(Ω) we conclude that

|Ω|
1

m(p−1)+1

p
m

m(p−1)+1

∫ T

0

(
h(t)p−1λ(Ω∗,

b

h(t)p−1
)

) m
m(p−1)+1

dt ≤ c2
λ(Ω, b)c3

. (38)

Since h(t)→ +∞ as t ↑ ‖u‖L∞(Ω), we have by Lemma 13 that

lim
t↑‖u‖∞

h(t)p−1λ(Ω∗,
b

h(t)p−1
) = mb.

Hence ‖ub‖L∞(Ω) < ∞. Then choosing T = ‖ub‖L∞(Ω) in (38) completes the
proof of Theorem 12. �

In analogy with (1) we define the torsional rigidity for the p-Robin torsion
function by

P (Ω, b) =

∫
Ω

ub,

where ub is a minimiser of (31). It is easily seen that ub ≥ 0. Hence P (Ω, b) =
‖u‖L1(Ω).
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Theorem 14. If Ω is an open set in Rm,m = 2, 3, · · · with |Ω| < ∞, and if
p > 1 and b > 0 then

b−1/(p−1)|Ω|p/(p−1)Hm−1(∂Ω)−1/(p−1) ≤ P (Ω, b) ≤ λ(Ω, b)−1/(p−1)|Ω|.

Proof. The infimum in (31) is attained by the p-torsion function ub ∈W 1
p,p(Ω).

We have the following variational characterization.

P (Ω, b)p−1 = sup

(∫
Ω

|∇v|p + b

∫
∂Ω

|v|pdHm−1

)−1 ∣∣∣∣∫
Ω

v

∣∣∣∣p ,
where the supremum is over all v ∈W 1

p,p(Ω)\{0}. To prove the lower bound we
choose the test function v = 1. To prove the upper bound we have by Hölder’s
inequality that

(∫
Ω
v
)p ≤ |Ω|p−1

∫
Ω
|v|p. The variational characterization of

λ(Ω, b) in (32) gives that
∫

Ω
|∇v|p + b

∫
∂Ω
|v|pdHm−1 ≥ λ(Ω, b)

∫
Ω
|v|p, which

completes the proof.

Remark 1. If Ω is an open set with non-smooth boundary then the space
W 1
p,p(Ω, ∂Ω) does not lead to the natural relaxation of the Robin problem. Pre-

cisely if Ω is a Lipschitz set from which one removes a Lipschitz crack, in the
space W 1

p,p(Ω, ∂Ω) all functions have the same trace on both sides of the crack,
while one can write properly the Robin problem in the Sobolev space W 1,p(Ω)
which is much larger than W 1

p,p(Ω, ∂Ω). A suitable relaxation of the Robin prob-
lem, based on the special functions with bounded variations, was introduced in
[10] to deal with these situations (see [1] for details). The torsional rigidity
could be defined on the open bounded sets in Rm by P (Ω) =

∫
Ω
udx, where u

is any minimizer of

v 7→
∫

Ω

|∇v|p + b

∫
Jv

(|v+|p + |v−|p)dHm−1 − p
∫

Ω

v,

among all non-negative functions v ∈ Lp(Rm) such that vp ∈ SBV (Rm), v = 0
a.e. on Rm \ Ω, Hm−1(Jv \ ∂Ω) = 0. Above Jv is the set of jump points of v
and v+ and v− stand for the upper and lower approximate limits of v in a point
of the jump set. A similar estimate as the one in (34) can be obtained in the
SBV framework, by replacing the W 1

p,p-Robin eigenvalues with the SBV-Robin
eigenvalues.
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[3] R. Bañuelos, T. Carroll, Brownian motion and the fundamental frequency
of a drum, Duke Mathematical Journal 75, 575–602 (1994).
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