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I this talk I reported on new methods based on free boundary - free discontinu-
ity techniques that can be used in order to obtain qualitative information on the
optimal domains minimizing a shape functional. In particular, I considered func-
tionals depending on the spectrum of the Laplace operator with Dirichlet or Robin
boundary condition.

Dirichlet boundary conditions. Let F : Rk → R be a lower semicontinuous
function, non-decreasing in each variable. For every quasi-open set Ω ⊆ RN (N ≥
2) we denote

λ1(Ω) ≤ λ2(Ω) ≤ ... ≤ λk(Ω)

the first k eigenvalues of the Laplacian with Dirichlet boundary conditions. Con-
cerning the definition of quasi-open sets and of the Laplace operator on quasi-open
sets, we refer to [3, Chapters 4, 5]. Denoting by |Ω| the measure of Ω, for some
m > 0 we consider the following problems:

(P1) min
Ω quasi-open,|Ω|=m

F (λ1(Ω), ..., λk(Ω));

(P2) min
Ω quasi-open

F (λ1(Ω), ..., λk(Ω)) + |Ω|.

Below is a compilation, presented in a unified framework, of two recent existence-
qualitative results obtained independently and using different methods by Maz-
zoleni and Pratelli [8] and D. B. [2].

a) Under the hypotheses above, problems (P1) and (P2) have at least one
solution Ω, which is a bounded set.

b) If F is moreover locally Lipschitz, then every solution Ω of (P2) is a
bounded set with finite perimeter.

c) If in addition F is locally bi-Lipschitz in at least one variable, then every
solution Ω of (P1) is a bounded set with finite perimeter.

The existence result for (P1) and (P2) under the additional constraint that the
competing domains are contained in a prescribed bounded open set was proved by
Buttazzo and Dal Maso in [6]. Point a) is proved in [8] and is based on a geometric
argument allowing to cut small (unbounded) regions of a set while keeping control
on the spectrum. Points b) and c) are a consequence of the analysis of the shape
subsolutions by free boundary methods (see [2]) and can be complemented with
more information related to the inner density of the optimal shapes. In all cases,
the diameter of the optimal sets are controlled.

Robin boundary conditions. Let β > 0 be fixed. For every bounded set with
Lipschitz boundary Ω ⊆ RN we consider the Robin-torsional rigidity defined by
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P (Ω) =
∫

Ω
udx, where u solves the problem{

−∆u = 1 in Ω
∂u
∂n + βu = 0 ∂Ω

In a joint work with A. Giacomini (in progress) we prove that

P (B) ≥ P (Ω),

where B is the ball of the same measure as Ω. Moreover, equality holds if and
only if Ω is the ball.

The method is based on a free discontinuity approach, via the analysis of the
relaxed free discontinuity problem

min
u2∈SBV (RN ),|{u>0}=m|

1
2

∫
RN

|∇u|2dx+
β

2

∫
Ju

(|u+|2 + |u−|2)dHN−1 −
∫

RN

udx,

for which we prove existence of a solution and Ahlfors regularity of the jump set.
Of crucial importance in the proof of the Ahlfors regularity is the monotonicity
lemma obtained in a joint work with S. Luckhaus [4], as well as a regularity result
for free discontinuity problems with Robin boundary conditions obtained in the
same paper, asserting the existence of a positive constant α > 0 such that the
solution of the free discontinuity problem above satisfies

u(x) ≥ α a.e. x ∈ {u > 0}.

This results would be a consequence of the Hopf maximum principle if the bound-
ary of the positivity region were smooth.

Consequently, one proves that the minimizer of the relaxed free discontinuity
problem above consists on a couple: an open set with finite perimeter Ω and the
Robin torsion function on Ω extended by zero on its complement. Radial symmetry
of the set Ω and its torsion function is obtained by a cut and reflect argument.

This method can be extended to semi-linear eigenvalue Robin problems

min
|Ω|=m

min
u∈H1(Ω)

∫
Ω
|∇u|2dx+ β

∫
∂Ω
|u|2dHN−1( ∫

Ω
|u|qdx

) 2
q

,

for 1 ≤ q < 2N
N−2 . The first Robin eigenvalue of the Laplacian corresponds to the

case q = 2 and the torsional rigidity to q = 1. In the literature, only the case
q = 2 was known (Bossel [1] in R2, Daners [7] in RN within a Lipschitz setting
and B.-Giacomini [5] for the general SBV framework). The proof of the case q = 2
uses a key idea of Bossel related to the notion of extremal lengths which does not
seem (easily) extendable to other values of q.
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