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Abstract. For K belonging to the class of convex bodies in Rn, we consider the λ1-
product functional, defined by λ1(K)λ1(Ko), where Ko is the polar body of K, and
λ1(·) is the first Dirichlet eigenvalue of the Dirichlet Laplacian. As a counterpart of
the classical Blaschke-Santaló inequality for the volume product, we prove that the λ1-
product is minimized by balls. Much more challenging is the problem of maximizing the
λ1-product modulo invertible linear transformations, which is the analogue of the famous
Mahler conjecture for the volume product in Convex Geometry. We solve the problem
in dimension n = 2 for axisymmetric convex bodies, by proving that the solution is the
square. To that aim we first reduce our problem to a reverse Faber-Krahn inequality for
axisymmetric convex octagons, and then we identify an optimal octagon with the one
which degenerates into a square. For this latter challenge, we employ a hybrid method
inspired by the Polymath blog by Tao, which is based on the joint use of theoretical
arguments to settle octagons lying in computable “neighborhoods” of the square, and of
a numerical argument (rigorously working thanks to the monotonicity by inclusions of
the involved functionals) to settle octagons lying outside the confidence zones.

1. Introduction

Let Kn be the class of convex bodies in Rn (convex compact sets with nonempty interior),
and let Kn∗ be the subclass of centrally symmetric convex bodies. Given any K ∈ Kn with
the origin in its interior, the polar body of K is defined as Ko := {y ∈ Rn : 〈x, y〉 ≤ 1 ∀x ∈
K}, where 〈·, ·〉 denotes the Euclidean scalar product in Rn. For K ∈ Kn∗ , the quantity

|K||Ko|

is called the volume product of K. This quantity turns out to be invariant under invertible
linear transformations, as it follows immediately from the equalities (T (K))o = (T t)−1(Ko)
and |T (K)| = |detT ||K|, holding for every T ∈ GLn.
In 1939 Mahler conjectured that, when K varies in Kn∗ , the maximum of the volume
product should be attained at the ball, whereas its minimum should be attained at the
n-cube. Clearly, all the linear images of these domains should be optimal as well.
For non-centered bodies, the notion of volume product has to be generalized into

min
x∈int(K)

|K||(K − x)o|

(so that it becomes invariant under affinities), and the analogous conjecture tells that the
extremal domains are balls and n-simplexes (and their affine images).
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The upper bound inequality was proved in [7, 43], and is known as Blaschke-Santaló
inequality: denoting by B a generic ball, it holds

min
x∈int(K)

|K||(K − x)o| ≤ |B||Bo| ∀K ∈ Kn ;

the developments of this important inequality in convex affine geometry are still object of
investigation, see for instance [37, 33, 20, 11, 6, 41] .
The lower bound inequality, which is called the Mahler conjecture, is still open and is
one of the most fascinating and actual problems in Convex Geometry. Up to now, it
has been proved only for n = 2 and for K belonging to some restricted classes of convex
bodies in higher dimensions. For n = 2 it was proved in [34] by Mahler himself, who also
proved that, when K varies in Kn, the volume product stays bounded by strictly positive
constants, depending only on the space dimension n. Some special classes of convex bodies
where the conjecture has been settled are: unconditional bodies [42], zonoids [40], and
polyhedra with a small number of vertices [32]. For general convex bodies, estimates from
below for the volume product have been proved by Bourgain-Milman [12] and Kuperberg
[30]. Further quite active related research directions include the investigation of local
minima [38, 29, 25], stability results [10], and functional forms of the inequality [21]. For
more references and comments on Mahler’s conjecture, we refer to [44, Sec. 10.7] and [45,
Sec. 3.8].
Let us now turn to what we like to call the “variational side” of these geometric inequalities.
Aim of this paper is to launch and attack the study of inequalities involving the notion
of polarity for functionals other than volume, which are not purely geometric, but are
associated with some elliptic variational problem, such as the first Dirichlet eigenvalue
of the Laplacian, the torsional rigidity, or the Newtonian capacity. In fact, on the class
Kn these functionals behave in a similar way as volume under different aspects, including:
monotonicity with respect to inclusions, homogeneity with respect to homotecies, response
under Schwarz symmetrization [26], validity of a Brunn-Minkowski type inequality [8, 9,
17], existence and uniqueness for the Minkowski problem [28, 27, 18]. For this reason, it
seems somehow natural to investigate the validity of upper or lower bounds for “variational
Mahler products”, namely functionals of the type f(K)f(Ko), where f is one of the above
mentioned energy costs. To the best of our knowledge, any result in this direction should
sound completely new in the broad framework of isoperimetric or spectral inequalities (see
for instance [2, 3, 46, 47, 15, 16, 19, 22, 23, 24, 31, 35, 39]).
In this paper, we focus our attention on the case of the principal frequency, and we study
extremum problems for the following functional, that we call the λ1-product:

λ1(K)λ1(Ko) ;

here and in the sequel, λ1(K) stands for the first eigenvalue of the Laplacian on the relative
interior of K with Dirichlet condition u = 0 on ∂K.
As a first result, we establish an analogue of the Blaschke-Santaló inequality, which in the
centrally symmetric version states that balls solve the minimization problem

(1) inf
{
λ1(K)λ1(Ko) : K ∈ Kn∗

}
(see Theorem 1). The fact that balls are minimizers for the λ1-product whereas they are
maximizers for the volume product, is naturally due to the monotonicity under inclusions
of λ1, which is opposite with respect to the case of volume. The proof of Blaschke-
Santaló inequality for λ1 is quite simple and relies on the combination of Blaschke-Santaló
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inequality for the volume product with the classical Faber-Krahn inequality, that we recall
under the form (see e.g. [26])

(2) λ1(K)|K|
2
n ≥ λ1(B)|B|

2
n ∀K ∈ Kn .

On the other hand, the maximization problem for the λ1-product appears as a counterpart
of Mahler conjecture, and it seems to be equally or even more delicate than the latter is.
One of the reasons is that, to the best of our knowledge, there is no specific relation
between the first Dirichlet eigenfunction of Ko and the one of K, nor more generally a
canonical way to produce a trial function in H1

0 (Ko) starting from an element of H1
0 (K).

Another basic fact is that the λ1-product is no longer invariant under invertible linear
transformations, and the problem of maximizing it over Kn or over Kn∗ , taken as such, is
ill posed, since the λ1-product tends to +∞ along a sequence of thinning domains (e.g.,
in dimension n = 2, along a sequence of thinning rectangles). Thus, if we work to fix the
ideas in the centrally symmetric setting, in order to keep the supremum finite and recover
the existence of a maximizing domain, it is necessary to preliminarily minimize over all
the invertible linear images of K. In other words, the correct formulation of the problem
reads

(3) sup
{

inf
T∈GLn

λ1(T (K))λ1(T (K)o) : K ∈ Kn∗
}
.

We believe that, as it happens for the volume product, also the λ1-product is, loosely
speaking, a “measure of roundedness” for convex bodies; in particular, we conjecture that
the solution to the above problem is the n-cube. In this paper we prove such conjecture
in space dimension n = 2 and under the requirement the admissible convex bodies satisfy
the additional condition of being axisymmetric.
Throughout the paper, we denote by K2

] the class of axisymmetric bodies in K2.

Our main result (see Theorem 9) states that the square solves

(4) sup
{

inf
T∈D2

[
λ1(T (K))λ1((T (K))o)

]
: K ∈ K2

]

}
,

where D2 denotes the class of invertible diagonal transformations of R2 into itself.
In a similar way as problem (1) is related to the Faber-Krahn inequality (2), problem
(3) (or its simplest version (4)) leads in a natural way to wonder about the validity of
a “reverse form” of the Faber-Krahn inequality. For analogous reasons as above, such
a reverse form should be searched modulo invertible linear transformations, namely by
studying the problem

sup
{

inf
T∈GLn

[
λ1(T (K))|T (K)|

2
n
]

: K ∈ Kn∗
}
,

which we expect to be solved by the n-cube. So far, the only antecedent about reverse
isoperimetric-type inequalities exists in a purely geometric context: it is the beautiful result
due to Ball (see [4]) which asserts that, for every K ∈ Kn∗ , there is a linear image T (K) such

that the isoperimetric quotient |∂T (K)|/|T (K)|
n−1
n is not larger than the corresponding

expression for a n-cube. In other words, the n-cube solves

sup
{

inf
T∈GLn

[
|∂(T (K))||T (K)|−

n−1
n
]

: K ∈ Kn∗
}
.

(A similar statement holds on Kn with the n-simplex as optimal domain).
Our route in order to prove Theorem 9 is as follows. Inspired by a proof of Mahler conjec-
ture for unconditional convex bodies due to Meyer [36], we show that a sufficient condition
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in order that the square solves problem (4) is that it solves the following “restricted ver-
sion” of the reverse Faber-Krahn inequality

(5) sup
{[
λ1(Ω)|Ω|

]
: Ω ∈ O

}
,

where O denotes the class of convex axisymmetric octagons having four of their vertices
lying on the axes at the same distance, say 1, from the origin (see the key Proposition 10).
We are then reduced to prove that the square is an optimal domain in problem (5). The
proof of such result (which is stated as Theorem 12) turns out to be quite delicate, and to it
is devoted most part of the paper. To solve the problem we have tracked the promising ap-
proach proposed by Tao on the Polymath Blog, more precisely within the discussion about
the hot-spot conjecture for acute-angled triangles (see http://polymathprojects.org/2013
/08/09/polymath7-research-thread-5-the-hot-spots-conjecture/). Such approach may be
called hybrid method, as it involves both theoretical and numerical tools, and takes advan-
tage of different arguments in order to manage with a multi-aspect problem. To explain
better what we mean, let us look at (5) as a two-parameter problem. Notice indeed that,
denoting by Q− the square with vertices (±1, 0) and (0,±1), and by Q+ the square with
vertices (±1,±1), for any convex octagon in the class O, four of its vertices are fixed at
the vertices of Q−, and by symmetry the remaining four are determined by one of them,
which is free to move in the region (Q+ \Q−)∩ (R+×R+). The coordinates of this vertex
x = (x1, x2) are the two parameters describing the class O in our problem.
Then the theoretical part of our proof consists in showing that the product λ1(Ω)|Ω| is
smaller than its value for a square (which equals 2π2) provided the octagon Ω is “sufficiently
close” to Q+ or Q−. Two main features have to be highlighted in this respect. First, we
can precise exactly “how much close” to Q± an octagon Ω must be in order that our
theoretical proof works; in other terms, the “confidence zones” where we are able to prove
directly the inequality are perfectly computable. Second, the proof has to be different
according to the way the octagon approaches the square; essentially three regimes can be
identified, each of which demands a completely different strategy:

• Regime I, when x is close to the vertex (1, 1) of Q+: in this case our strategy
relies on a continuous Steiner de-symmetrization argument, combined with the
construction, for hexagons close to Q+, of a test function enjoying some special
features, obtained via an affine deformation of the first eigenfunction of Q+.
• Regime II, when x is close to a boundary point of Q− which is not a vertex: in

this case we construct a good test function by using an affine deformation of the
first eigenfunction of Q−, and we proceed via explicit computations.
• Regime III, when x is close to the vertex (0, 1) (or to its symmetric (0, 1)): this

is the most delicate case, where we need to apply a cut-off argument inspired by
Alt-Caffarelli, and take into account the slope of the line joining x with (0, 1),
which enters into the game in a subtle way.

Once determined the confidence zones, the final part of the work consists in proving
numerically that the inequality λ1(Ω)|Ω| ≤ 2π2 holds true also outside them. At this
stage, the crucial idea which makes possible to obtain a mathematically rigorous proof
via a numerical approach is based on two arguments. First, observe that it is enough to
check that λ1(Ω′)|Ω′′| ≤ 2π2, where Ω′ and Ω′′ are octagons parametrized by the nodes of
a sufficiently fine mesh such that Ω′ ⊂ Ω ⊂ Ω′′. The reason why this check is sufficient
is simply the monotonicity of λ1 and volume with respect to inclusions. Second, the
inequality we shall prove is in fact λnum1 (Ω′)|Ω′′| ≤ 2π2, where λnum1 (Ω′) is a numerically
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computed approximation of λ1(Ω′) satisfying λ1(Ω′) < λnum1 (Ω′). This last inequality,
which plays a key role, is insured by the choice of the numerical method, as detailed in
the last section of the paper.
The extension of our results to the non axisymmetric case or to higher space dimensions
seems to be an interesting and challenging objective for further research.

Outline of the paper.
In Section 2 we prove Blaschke-Santaló inequality for λ1 (see Theorem 1), and we state
our main result on Mahler problem for λ1 in the axisymmetric planar case (see Theorem
9), after proving its well-posedness in a more general setting (see Proposition 5).
In Section 3, we show how Theorem 9 follows provided the square is optimal in the reverse
Faber-Krahn for octagons, namely provided it solves problem (5) (see Proposition 10). We
also give some numerical experiments in favor of the optimality of the square for problem
(5), and then we state it in Theorem 12, whose proof is subdivided in the subsequent
sections.
In Sections 4 and 5, we determine computable regions of validity of the reverse Faber-
Krahn inequality for octagons, respectively close to the exterior square Q+ (regime I) and
close to the interior square Q− (regimes II and III).
In Section 6 we describe the numerical proof outside the confidence zones.

2. Blaschke-Santaló inequality and Mahler problem for λ1

We begin by considering the maximization problem for the λ1-product, in the centrally
symmetric setting.

Theorem 1. (Blaschke-Santaló inequality for λ1, centrally symmetric case)
Let B be a ball. Then, for every K ∈ Kn∗ , it holds

(6) λ1(K)λ1(Ko) ≥ λ1(B)λ1(Bo) .

Proof. By the Faber-Krahn inequality (see for instance [26, Section 3.2]), for all K ∈ Kn
we have

λ1(K) ≥ λ1(K∗) and λ1(Ko) ≥ λ1

(
(Ko)∗

)
,

where K∗ and (Ko)∗ denote respectively the ball with same volume as K and Ko. Then
in order to prove (6) it is enough to show that

λ1

(
(Ko)∗

)
≥ λ1

(
(K∗)o

)
∀K ∈ Kn∗ .

By monotonicity of λ1(·), the above inequality is satisfied provided

(7) (Ko)∗ ⊆ (K∗)o ∀K ∈ Kn∗ .
Denote by Br the ball centered at the origin with radius r > 0, and by ωn the Lebesgue
measure of the unit ball in Rn. By definition, we have (Ko)∗ = Br1 and (K∗)o = Br2 ,
where the radii r1 and r2 are defined by the equalities

|Ko| := ωnr
n
1 and |K| = ωn

rn2

(note that the second equality holds since K∗ = Bo
r2 = B 1

r2

). By the Blaschke-Santaló

inequality for centrally symmetric bodies [7, 43], we know that |K| |Ko| ≤ ω2
n, so we infer

that

ω2
n

rn1
rn2
≤ ω2

n
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namely r1 ≤ r2, which implies (7) and achieves the proof. �

Remark 2. By inspection of the above proof, it is readily seen that inequality (6) can be
strengthened into

inf
T∈GLn

λ1(T (K))λ1

(
(T (K))o

)
≥ λ1(B)λ1(Bo) ∀K ∈ Kn∗ .

Indeed, it is enough to replace the body K in the proof of Theorem 1 by K ′ := T (K), T
being an arbitrary element of GLn, and use the inequality |K ′||(K ′)o| ≤ ω2

n. On the other
hand, if one wants to allow also non-centered convex bodies, the inequality must be stated
as

(8) sup
x∈int(K)

inf
T∈GLn

λ1(T (K − x))λ1

(
(T (K − x))o

)
≥ λ1(B)λ1(Bo) ∀K ∈ Kn .

In this case one has to replace the bodyK in the proof of Theorem 1 byK ′′ := T (K−s(K)),
T being an arbitrary element of GLn and s(K) the so-called Santaló point of K (which is
defined as the unique solution to the minimization problem min{|(K−x)o| : x ∈ int(K)}),
and then invoke the general version of Blaschke-Santaló inequality |K ′′||(K ′′)o| ≤ ω2

n.

We now turn to the more challenging extremum problem for the λ1-product, the maximiza-
tion one; we start starting with a simple but important observation, already mentioned in
the Introduction:

Remark 3. There holds

sup
K∈Kn

λ1(K)λ1(Ko) = sup
K∈Kn∗

λ1(K)λ1(Ko) = +∞ .

To see this, one has to consider the asymptotic behavior of the λ1-product along a sequence
of (possibly centrally symmetric) thinning domains. For instance, in dimension n = 2, it
is enough to take a sequence of thinning rectangles, Kh := [−1, 1]× [− 1

h ,
1
h ], and check via

some straightforward computations that limh λ1(Kh)λ1((Kh)o) = +∞.

However, the well-posedness of the maximization problem for the λ1-product can be easily
recovered by passing preliminarily to the infimum over a suitable family of images of K.
To be more precise, we rely on the following abstract lemma, where we denote by Kn] the
class of unconditional bodies, namely bodies which are symmetric with respect to all the
coordinate hyperplanes of a fixed frame.

Lemma 4. Let J(·) be a shape functional defined on Kn. Assume that J is upper semi-
continuous with respect to the Hausdorff distance, and that it is invariant under one of
the following family of transformations:

(i) invertible affine transformations;

(ii) invertible linear transformations;

(iii) invertible diagonal transformations.

The J attains a supremum, respectively: (i) over Kn; (ii) over Kn∗ ; (iii) over Kn] .

Proof. If J is invariant under transformations respectively as in (i), (ii), and (iii), let {Kh}
be a maximizing sequence for J over Kn, over Kn∗ , and over Kn] . By John’s Lemma (see
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e.g. [5, Lecture 3]), for every h there exists a ball Bh and an affine transformation K̃h of

Kh such that Bh ⊆ K̃h ⊆ nBh and hence

(9)
Bh

|K̃h|
⊆ K̃h

|K̃h|
⊆ n Bh

|K̃h|
.

We point out that K̃h is constructed as Th(Kh), Th being an affine transformation which
maps the ellipsoid of maximal value contained into Kh into a ball. In particular, if Kh

belongs respectively to Kn, Kn∗ , and Kn] , we have that K̃h is an affine, linear, or diagonal

image of Kh. Then, by the invariance assumption made on J , we can assert that K̃h
|K̃h|

is

still a maximizing sequence respectively over Kn, Kn∗ , and Kn] .

Denoting by rh the radius of the ball Bh
|K̃h|

, and by ωn the measure of the unit ball in Rn,

by (9) we have

ωnr
n
h ≤ 1 ≤ nωnrnh .

Thus the sequence {rh} is bounded from above and from below, and the inclusions (9)

show that all the bodies K̃h
|K̃h|

are contained into a ball of fixed radius and contain a ball

of fixed radius. By Blaschke selection Theorem (see e.g. [44, Theorem 1.8.6]), we infer

that after passing to a (not relabeled) subsequence, K̃h
|K̃h|

converge in Hausdorff distance

to a non degenerated limit body K, which belongs respectively to Kn, Kn∗ , and Kn] (since

any of these classes is closed under Hausdorff convergence). By the upper semicontinuity
assumption made on J , it holds

J(K) ≥ lim supJ
( K̃h

|K̃h|

)
= sup
Kn

J,

hence K is a maximizer for J respectively over Kn, Kn∗ , and Kn] . �

By applying the above lemma we readily get

Proposition 5. (Mahler problem for λ1, centrally symmetric and unconditional cases)
The following problems admit a solution:

sup
{

inf
T∈GLn

λ1(T (K))λ1((T (K))o) : K ∈ Kn∗
}
,(10)

sup
{

inf
T∈Dn

λ1(T (K))λ1((T (K))o) : K ∈ Kn]
}
.(11)

Proof. If J is defined as the infimum of λ1(T (K))λ1((T (K))o) , respectively over T ∈ GLn
and over T ∈ Dn, then J satisfies the assumptions of Lemma 4 (ii) and (iii), and the result
follows. �

Remark 6. If one would like to consider the λ1-Mahler problem for non-centered convex
bodies, few words of warning are in order. Indeed, by analogy with (10)-(11), one could
erroneously pass to the infimum of λ1(T (K))λ1((T (K))o) for T ranging over all affine
transformations or Rn: the result would be simply zero, due to translations and more
precisely to the fact that λ1((K − x)o) is infinitesimal as x → ∂K. In spite, one should
pass to the supremum over translations and to the infimum over invertible linear trans-
formations (in a similar way as done in (8)). However, it is not immediate to get the



8 D. BUCUR, I. FRAGALÀ

well-posedness of the corresponding problem via Lemma 4, because the upper semicon-
tinuity is no longer straightforward. We do not enter more into details in this respect,
because in the remaining of the paper we deal just with symmetric bodies.

Remark 7. A very rough upper bound for the supremum in (11) can be found via John
Lemma: for every K ∈ Kn∗ , there exists T ∈ GLn and a ball Br of radius r such that

Br ⊆ T (K) ⊆ B√nr B 1√
nr
⊆ (T (K))o ⊆ B 1

r
,

which by monotonicity of λ1(·) with respect to inclusions implies

λ1(T (K))λ1((T (K))o) ≤ λ1(Br)λ1(B 1√
nr

) .

For instance, in dimension n = 2, this tells that the supremum in (11) is bounded above
by 2j4, where j ≈ 2.405 is the first zero of the Bessel function J0 (cf. [26, Section 1.2.5]).

Remark 8. For all the results of this section, similar statements continue to hold, with
unaltered proofs, if λ1 is replaced by the torsional rigidity or the Newtonian capacity. It
is enough to take care to reverse all the inequalities, due to the different monotonicity of
these functionals with respect to inclusions.

In the remaining of the paper we deal with Mahler problem for λ1 in case of planar
axisymmetric convex bodies, and we prove:

Theorem 9. In dimension n = 2, problem (11) is solved by the square.

3. From Mahler problem for λ1

to a reverse Faber-Krahn inequality for convex octagons

In this section we provide a sufficient condition for the validity of Theorem 9, under the
form of a reverse Faber-Krahn inequality for a family of convex octagons.
Denote by O ⊂ K2

] the class of convex axisymmetric octagons having four of their vertices

lying on the axes at the same distance from the origin. If Ω ∈ O has four vertices at (±`, 0)
and (0,±`), the remaining four vertices of Ω will be of the form (±x1,±x2), with (x1, x2)
belonging to the triangular region

{
(x1, x2) ∈ [0, `]2 : x2 ≥ ` − x1

}
. In particular, when

(x1, x2) agrees with the point (`, `), or falls upon the line segment
{
x1 ∈ [0, `] , x2 = `−x1

}
,

the corresponding octagon degenerates into a square. Note that, for any square Q, it holds

λ1(Q)|Q| = 2π2 .

We have:

Proposition 10. Assume that the square solves the maximization problem

(12) sup
Ω∈O

λ1(Ω)|Ω| ,

namely there holds

(13) λ1(Ω)|Ω| ≤ λ1(Q)|Q| = 2π2 ∀Ω ∈ O .
Then the square solves the maximization problem

(14) sup
{

inf
T∈D2

[
λ1(T (K))λ1(T (K)o)

]
: K ∈ K2

]

}
,

namely for every K ∈ K2
] there exists T ∈ D2 such that

(15) λ1(T (K))λ1(T (K)o) ≤ inf
T∈D2

[
λ1(T (Q))λ1(T (Q)o)

]
=
π4

2
.
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In order to prove Proposition 10, we begin by observing that the last equality in (15) is
an immediate consequence of the optimality of the square in the Faber-Krahn inequality
for quadrilaterals. Indeed it holds:

Lemma 11. Let Q ⊂ R2 be a square, and let T ∈ D2. Then

λ1(T (Q))λ1(T (Q)o) ≥ λ1(Q)λ1(Qo) =
π4

2
.

Proof. For any T ∈ D2, by using the Faber-Krahn inequality for quadrilaterals (see e.g.
[26, Section 3.3]), and the invariance of the volume product under invertible linear trans-
formations, we get

λ1(T (Q))λ1(T (Q)o) =
λ1(T (Q))|T (Q)|λ1((T (Q))o)|(T (Q))o|

|T (Q)||(T (Q))o|

≥ λ1(Q)|Q|λ1(Qo)|Qo|
|Q||Qo|

= λ1(Q)λ1(Qo)

�

Proof of Proposition 10. In view of Lemma 11, we need to show that, for every K ∈ K2
] ,

there exists T ∈ D2 such that

(16) λ1(T (K))λ1(T (K)o) ≤ π4

2
.

Let e1 = (1, 0) and e2 = (0, 1), and let 〈e1〉, 〈e2〉 be the coordinate axes.
If K ∩ 〈ei〉 = [−`i, `i] for i = 1, 2, we are going to show that (16) holds true by choosing
as an element T ∈ D2 the map

(17) T (x1, x2) :=
(`2
`1
x1, x2

)
∀(x1, x2) ∈ R2 .

Note that the transformed body T (K) satisfies the equality condition

|T (K) ∩ 〈e1〉| = |T (K) ∩ 〈e2〉|(= `2) .

Moreover, since Ko ∩ 〈ei〉 = −[ 1
`i
, 1
`i

] for i = 1, 2, the dual transformed body (T (K))o =

(T t)−1(Ko) (where (T t)−1 is the transformation (T t)−1(y1, y2) =
(
`1
`2
y1, y2

)
) satisfies the

same kind of equality condition, namely

|(T (K))o ∩ 〈e1〉| = |(T (K))o ∩ 〈e2〉|(=
1

`2
) .

Assume for a moment we are able to prove the following

Claim: if Z ∈ K2
] satisfies |Z ∩ 〈e1〉| = |Z ∩ 〈e2〉| =: 2`, it holds

(18) λ1(Z)(x1 + x2) ≤ π2

`
∀x = (x1, x2) ∈ Z .

Applying such claim also to the polar body Zo (which satisfies |Zo∩〈e1〉| = |Zo∩〈e2〉| = 2
` ),

we get

(19) λ1(Zo)(y1 + y2) ≤ ` π2 ∀y = (y1, y2) ∈ Zo .
The inequalities (18) and (19) imply respectively that

v :=
(λ1(Z)

π2

`

,
λ1(Z)
π2

`

)
∈ Zo and w :=

(λ1(Zo)

`π2
,
λ1(Zo)

`π2

)
∈ Z .
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Taking the scalar product of v and w we infer

λ1(Z)λ1(Zo)

π4
+
λ1(Z)λ1(Zo)

π4
≤ 1 .

We have thus obtained that the inequality λ1(Z)λ1(Zo) ≤ π4

2 is satisfied for every Z ∈ K2
∗

which satisfies the equality condition |Z ∩ 〈e1〉| = |Z ∩ 〈e2〉|. By applying such inequality
to Z = T (K), K being an arbitrary element of K2

] and T the transformation chosen as in

(17), we obtained that (16) is satisfied.
In order to achieve the proof, it only remains to prove the above claim. To that aim, we
are going to exploit the assumption (13). Let Z ∈ K2

] with |Z ∩ 〈e1〉| = |K ∩ 〈e2〉| = 2`,

and let x = (x1, x2) ∈ Z be fixed. In order to prove (18), we may assume that x1 and x2

are nonnegative. Clearly, by convexity, Z turns out to contain the octagon with vertices at
(±x1,±x2), (±`, 0), (0,±`). Denote such octagon by Ω`

(x1,x2). By monotonicity of λ1 with

respect to inclusion, it holds, λ1(Z) ≤ λ1(Ω`
(x1,x2)). Moreover, an immediate computation

gives

|Ω`
(x1,x2)| = 4

(1

2
`x1 +

1

2
`x2

)
= 2`(x1 + x2) .

Therefore (18) holds true, since

λ1(Z)2`(x1 + x2) ≤ λ1(Ω`
(x1,x2))2`(x1 + x2) = λ1(Ω`

(x1,x2)) |Ω
`
(x1,x2)| ≤ 2π2 ,

where the last inequality follows from assumption (13). �

Thanks to Proposition 10, in order to prove Theorem 9 we are reduced to study the simpler
problem (12). The different advantages of studying problem (12) in place of problem (14)
are self-evident: we have get rid of polarity, we only have to deal with convex octagons,
and we can also easily perform some numerical tests. Let us report below some numerical
experiments on the validity of inequality (13). Since the product λ1(Ω)|Ω| is invariant by
scaling, with no loss of generality one can restrict the analysis to octagons in O having
four vertices at the points (±1, 0) and (0,±1); the remaining four vertices will be of the
form (±x1,±x1), with (x1, x2) lying in the triangular region

(20) ∆ :=
{

(x1, x2) ∈
[
0, 1
]2

: x2 ≥ 1− x1

}
.

For (x1, x2) ∈ ∆, set

(21) Ω(x1,x2) := the octagon with vertices (±1, 0) , (0,±1) , (±x1,±x2) .

(note that Ω(x1,x2) reduces to a hexagon or to a square for (x1, x2) ∈ ∂∆), and consider
the map

(22) E(x1, x2) := λ1(Ω(x1,x2))|Ω(x1,x2)| .

With this notation, inequality (13) states that the maximum of the above map E over the
region ∆ is equal to 2π2 and it is attained when the point (x1, x2) lies either at the vertex
P or along the segment S defined by

(23) P := (1, 1) and S :=
{

(x1, x2) ∈
[
0, 1
]2

: x2 ≥ 1− x1

}
;

correspondingly, Ω reduces respectively to

Q+ := the square with vertices (±1,±1)(24)

Q− := the square with vertices (±1, 0) and (0,±1) .(25)
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We enclose hereafter two plots of the map E on such region, which bring some evidence
to the truthfulness of the inequality (13).
In fact we are going to prove the following result, which in view of Proposition 10 implies
also Theorem 9:

Theorem 12. Inequality (13) holds true (and in addition it is strict unless Ω is a square),
and hence the unique solution to problem (12) is the square.

As announced in the Introduction, in order to obtain Theorem 12 we pursue a hybrid
theoretical-numerical method, which is developed in detail in the next sections.

Figure 1. Plot of the map E and its level sets over ∆

4. Confidence zone near the point P

In this section we prove that the function E = E(x1, x2) introduced in (22) assumes values
smaller than 2π2 in a computable neighborhood of the point P = (1, 1).
In order to prepare our estimate from above the map E near P , we need the following
definition and the subsequent lemma.

For every Ω ∈ K2
] , let H̃(Ω) be the subspace of functions u ∈ H1

0 (Ω) which satisfy the
following conditions

u(x1, x2) = u(−x1, x2) = u(x1,−x2) = u(−x1,−x2) ∀ (x1, x2) ∈ Ω ;(26)

ũ(x1, 0) = ũ(0, x1) ∀ (x1, 0) ∈ Ω ∩ (R× {0}) ;(27)

ũ(x1, x2) ≥ ũ(x1 + x2, 0) ∀ (x1, x2) ∈ Ω ∩ (R+)2 ;(28)

in (27) and (28), ũ stands for the trace of u, respectively on the coordinate axes and on
the line segment y = −x+ x1 + x2.

Definition 13. We define the modified eigenvalue λ̃1

(
Ω) by

λ̃1(Ω) := inf
{∫

Ω |∇u|
2 dx∫

Ω |u|2 dx
: u ∈ H̃(Ω)

}
Remark 14. It is immediate from the above definition that the inequality λ1(Ω) ≤ λ̃1(Ω)
holds for every Ω ∈ K2

] .
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Lemma 15. For any ε ∈ (0, 1), let Ω(1−ε,1) be the hexagon defined according to (21).
Then it holds

(29) λ̃1

(
Ω(1−ε,1)

)
≤

π2

16 + ε
4 + π2

16

(
1−ε+ε2

1−ε

)
1
4 + ε

(
1
π2 − 1

8

) .

Proof. In order to obtain inequality (29), we are going to exploit a suitable test function

U ∈ H̃
(
Ω(1−ε,1)

)
, defined as a deformation of the first Dirichlet eigenfunction of the

Laplacian on Q+. Recall that Q+ denotes the square with vertices (±1,±1) and that, up
to constant multiples, its first eigenfunction is given by

(30) u(x1, x2) := cos
(πx1

2

)
cos
(πx2

2

)
.

Let T : Q+ ∩
{
x1 ≥ 0, x2 ≥ 0

}
→ Ω(1−ε,1) ∩

{
X1 ≥ 0, X2 ≥ 0

}
be the transformation

defined as follows:

(X1, X2) = T (x1, x2) :=

{
(x1, x2) if x1 + x2 ≤ 1(
(1− ε)x1 − εx2 + ε, x2) if x1 + x2 ≥ 1

Note that, for x1 + x2 ≥ 1, T is uniquely determined as the affine map which keeps the
points (1, 0) and (0, 1) fixed, and moves the point (1, 1) into (1− ε, 1). Then we take as a
test function U the axisymmetric function defined on Ω(1−ε,1) ∩

{
X1 ≥ 0, X2 ≥ 0

}
by

(31) U(X1, X2) = U(T (x1, x2)) := u(x1, x2) .

Since u ∈ H1
0 (Q+), we have U ∈ H1

0

(
Ω(1−ε,1)

)
. Clearly, U satisfies condition (26) (because

it is axisymmetric by definition); moreover, using (30) and (31), it is readily checked that

U satisfies also conditions (27) and (28). Hence U ∈ H̃
(
Ω(1−ε,1)

)
, and therefore

(32) λ̃1

(
Ω(1−ε,1)

)
≤

∫
Ω(1−ε,1)

|∇U |2∫
Ω(1−ε,1)

|U |2
.

Let Tl and Tu denote the lower and upper triangles

Tl := Q+∩{x1 ≥ 0, x2 ≥ 0, x1+x2 ≤ 1} and Tu := Q+∩{x1 ≥ 0, x2 ≥ 0, x1+x2 ≥ 1} .
Some straightforward computations yield∫

Ω(1−ε,1)

|U |2(X1, X2) dX1 dX2 = 4
{∫
Tl
|u|2(x1, x2) dx1dx2 + (1− ε)

∫
Tu
|u|2(x1, x2) dx1dx2

}
= 4

{1

4
+ ε
( 1

π2
− 1

8

)}
and∫

Ω(1−ε,1)

|∇U |2(X1, X2) dX1 dX2 = 4
{∫
Tl
|∇u|2(x1, x2) dx1dx2

+(1− ε)
∫
Tu

[( ∂u
∂x1

1

1− ε

)2
+
( ∂u
∂x1

ε

1− ε
+

∂u

∂x2

)2]
dx1dx2

}
= 4

{π2

16
+
ε

4
+
π2

16

(1− ε+ ε2

1− ε

)}
Inserting these expressions into (32) gives the desired estimate (29). �
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Proposition 16. Let P := (1, 1), and set

U(P ) :=
{

(x1, x2) ∈ ∆ : x1 + x2 ≥ 2− ε
}

where ∆ is the triangular region defined in (20), and ε := 0.371034. If Ω(x1,x2) is the
octagon defined in (21), it holds

(33) E(Ωx1,x2) = λ1

(
Ω(x1,x2)

)∣∣Ω(x1,x2)

∣∣ < 2π2 ∀(x1, x2) ∈ U(P ) .

Proof. As a first step, let us show that

(34) λ̃1

(
Ω(1−ε,1)

)∣∣Ω(1−ε,1)

∣∣ < 2π2 ∀ε ∈ (0, ε] .

Namely, from Lemma 15, and taking into account that
∣∣Ω(1−ε,1)

∣∣ = 4 − 2ε, we infer that
the inequality (34) is fulfilled for all ε ∈ (0, 1) such that the function

ϕ(ε) :=

π2

16 + ε
4 + π2

16

(
1−ε+ε2

1−ε

)
1
4 + ε

(
1
π2 − 1

8

) (
4− 2ε

)
− 2π2

is nonpositive. Since the smallest zero of ϕ is easily computed to be

−4 + 2π2 −
√

144− 16π2 + 4π4

8− 2π2
= 0.371034 = ε ,

we deduce that (34) holds.
The remaining of the proof consists in showing that (34) implies (33).
Notice first that it is equivalent to state the inequality (33) only for (x1, x2) ∈ U(P )∩{x2 ≥
x1}, since octagons corresponding to (x1, x2) ∈ U(P )∩{x2 ≤ x1} are obtained by a rotation
from octagons corresponding to (x1, x2) ∈ U(P ) ∩ {x2 ≥ x1}.
Next we observe that, by definition of U(P ), for every (x1, x2) ∈ U(P ) ∩ {x2 ≥ x1}, the
point (x1 + x2 − 1, 1) is of the form (1− ε, 1) for some ε ∈ (0, ε]. Taking also into account
that the octagon Ω(x1,x2) and the hexagon Ω(x1+x2−1,1) have the same area, and in view
of Remark 14, we infer that the required implication (34) ⇒ (33) is satisfied if

(35) λ̃1

(
Ω(x1,x2)

)
≤ λ̃1

(
Ω(x1+x2−1,1)

)
∀(x1, x2) ∈ ∆ ∩ {x2 ≥ x1} .

In order to prove (35), we exploit the tool of continuous Steiner (de-)symmetrization due
to Brock (cf. Figure 2 below).

x1

x2

Figure 2. De-symmetrization of the set Ω(x1,x2) ∩ (R+)2



14 D. BUCUR, I. FRAGALÀ

Let (x1, x2) ∈ ∆∩{x2 ≥ x1} be fixed, and let u ∈ H̃
(
Ω(x1+x2−1,1)

)
be a function at which

the infimum which defines λ̃1

(
Ω(x1+x2−1,1)

)
is attained. For convenience, after extending

it to zero outside Ω(x1+x2−1,1), we may think of u as a function defined on R2. Then, we

consider the restriction of u to (R+)2, and we extend it to a function û, defined on the
whole of R2, in such a way that, on the complement of (R+)2, û is symmetric with respect

to the line x1 = x2. Note that this is possible because u ∈ H̃
(
Ω(x1+x2−1,1)

)
, so that in

particular it satisfies condition (27).
By construction we have

λ̃1

(
Ω(x1+x2−1,1)

)
=

∫
Ω(x1+x2−1,1)

|∇u|2∫
Ω(x1+x2−1,1)

|u|2
=

∫
(R+)2 |∇u|

2∫
(R+)2 |u|2

=

∫
(R+)2 |∇û|

2∫
(R+)2 |û|2

.

Now we write ∫
(R+)2 |∇û|

2∫
(R+)2 û

2
=

∫
R2 |∇û|2 −

∫
R2\(R+)2 |∇û|

2∫
R2 |û|2 −

∫
R2\(R+)2 |û|2

.

Let ût be a continuous Steiner symmetrization of û with respect to the line x1 = x2. Recall
that ût is defined by the equalities

{ût > c} = {û > c}t ∀c > 0 and {ût = 0} = R2 \
⋃
c>0

{û > c}t ,

where {û > c}t denotes a continuous Steiner symmetrization of the level set {û > c} with
respect to the line x1 = x2. For the benefit of the reader who is not familiar with this kind
of symmetrization, let us also specify that, for any measurable set M ⊂ R2, a continuous
Steiner symmetrization of M with respect to a given direction ν is the set

M t := {xν + yν⊥ : x ∈ R , y ∈M(x)t} ,

where M(x) := (xν + Rν⊥) ∩ M , and M(x)t := Φt(M(x)), {Φt}t≥0 being a family of
transformations from the class of measurable subsets of R into itself, such that: (i) Φt(M)
are equimeasurable (ii) Φt preserve inclusions (iii) Φt have the semigroup property (iv) if
I is an interval of the form [a, b], it holds Φt(I) = [at, bt], with at := 1

2(a− b+ e−t(a+ b)),

bt := 1
2(b−a+ e−t(a+ b)). For more details on the definition and properties of continuous

Steiner symmetrization, we refer to [13, 14].
We observe that, for all t > 0, ût turns out to agree with û on R2 \ (R+)2. This follows
by combining the fact that û is symmetric with respect to the line x1 = x2 on the set
R2 \ (R+)2 with the fact that u satisfies conditions (27) and (28).
We deduce that, for all t > 0, there holds:∫

R2\(R+)2
|∇û|2 =

∫
R2\(R+)2

|∇ût|2 and

∫
R2\(R+)2

|û|2 =

∫
R2\(R+)2

|ût|2 .

On the other hand, by the properties of continuous Steiner symmetrization, we have:∫
R2

|∇û|2 ≥
∫
R2

|∇ût|2 and

∫
R2

|û|2 =

∫
R2

|ût|2

(see e.g. [14, Corollary 3.2 and eq. (2.31)]):
So far, we have obtained

(36) λ̃1

(
Ω(x1+x2−1,1)

)
≥

∫
R2 |∇ût|2 −

∫
R2\(R+)2 |∇ût|

2∫
R2 |ût|2 −

∫
R2\(R+)2 |ût|2

=

∫
(R+)2 |∇ût|

2∫
(R+)2 |ût|2
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Now, we denote by v̂t the axisymmetric function on R2 which agrees with ût on (R+)2.
Clearly, we have

(37)

∫
(R+)2 |∇ût|

2∫
(R+)2 |ût|2

=

∫
R2 |∇v̂t|2∫
R2 |v̂t|2

.

Finally we observe that, when t varies in [0,+∞), the set {v̂t > 0} is of the form
Ω(x,−x+x1+x2), with x ranging in [x1 + x2 − 1, x1+x2

2 ). Therefore, by continuity, there

exists t ∈ (0,+∞) such that that {v̂t > 0} = Ω(x1,x2). For such t, we have by construction

v̂t ∈ H̃(Ω(x1,x2)), and hence

(38)

∫
R2 |∇v̂t|2∫
R2 |v̂t|2

≥ λ̃1(Ω(x1,x2)) .

By combining (36), (37) and (38), we obtain the required inequality (35), and our proof
is achieved. �

5. Confidence zone near the segment S

Recall that, according to definitions (23) and (25), the segment S is a portion of the
boundary of the square Q− (actually, S = ∂Q−∩ (R+)2). In this section we prove that the
function E(x1, x2) = λ1(Ω(x1,x2))|Ω(x1,x2)| assumes values smaller than 2π2 in a computable
neighborhood of S. Since this is a delicate task, let us outline our strategy, and explain
how the confidence zone will be obtained.

• As an initial step, in Section 5.1 we perform the shape derivative of the functional E
with respect to a deformation field with transforms the square Q− into an octagon.
Its expression can be explicitly computed (thanks to the knowledge of the first
eigenfunction of Q−), and turns out to be strictly negative, except at the endpoints
of S where it tends to 0 (see Proposition 17). The negative sign ensures the
existence, at every point of S except its endpoints, of a small segment orthogonal
to S where E < 2π2; the matter is precisely to find an explicit estimate for the
length of such a segment. On the other hand, the vanishing of the shape derivative
at the extremities is a warning that finding a confidence zone near (1, 0) where
E < 2π2 will require more efforts, since in a neighborhood of such point a second
order effect comes into play.

• In Section 5.2 we find a computable confidence region whose thickness, as expected,
degenerates when approaching (0, 1) (see Proposition 18). This is obtained by
taking a test function defined as a suitable deformation of the first eigenfunction
of Q−. The shape of this confidence region is represented in Figure 4 right; notice
that its thickness is bounded below in the complement of any fixed ball centered
at (0, 1), and therefore this region will do the job outside such a ball. We are thus
reduced to find a confidence region near (0, 1). This task is achieved in two steps
as described hereafter.

• In Section 5.3, we determine a neighborhood of the point (0, 1) where the inequality
E < 2π2 holds true (see Proposition 19). This is obtained by using a clever cut-off
argument from [1], combined with a careful balance of angles and radii. The shape
of the resulting confidence region is represented in Figure 5.
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• To summarize, the confidence zone near S is built as follows:

(i) Choose a neighborhood of (0, 1) as in Proposition 19 to determine a first con-
fidence zone.

(ii) Take the intersection of the region given by Proposition 18 with the complement
of the neighborhood determined in Proposition 19 to determine a second confidence
zone.

(iii) Take the union of the zones found at items (i) and (ii).

5.1. The shape derivative. It will be repeatedly useful to recall that the first Dirichlet
eigenfunction of Q−, normalized so that

∫
Q−

u2 = 1 is given by

(39) u(x, y) =
cos(πx) + cos(πy)√

2
∀(x, y) ∈ Q−

(see for instance [26, Theorem 2.5.1]).
We are going to compute the shape derivative of E at the square Q−, with respect to
a deformation field which transforms it into an octagon. More precisely, for ε > 0, we
consider the one-parameter family of deformations of Q− given by

(40) Qε := (Id + εV )(Q−) ,

where the velocity field V is defined as follows: it is symmetric with respect to the coor-
dinate axes and in the first quadrant it is given by

(41) V (x, y) = Vn(x, y)n , Vn
(
x, y
)

:=


a
x

x0
if x ∈ [0, x0]

a
y

1− x0
if x ∈ [x0, 1] ,

where n = (1,1)√
2

is the unit outer normal to ∂Q−, x0 is a fixed point in (0, 1), and a is a

positive parameter (a = Vn
(
x0, 1− x0

)
, see Figure 3).

x0

1− x0

Figure 3. The deformation field in Proposition 17
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Proposition 17. For ε > 0, let Qε be defined as in (40), with V as in (41). Then the
shape derivative

d

dε

(
λ1(Qε)|Qε|

)∣∣∣
ε=0+

is strictly negative (and tends to 0 as x0 → 0 or x0 → 1).

Proof. We have

(42)
d

dε

(
λ1(Qε)|Qε|

)∣∣∣
ε=0+

= λ1(Q−)
d

dε
|Qε|

∣∣∣
ε=0+

+ |Q−|
d

dε

(
λ1(Qε)

)∣∣∣
ε=0+

,

with (see for instance [26, Chapter 2])

d

dε
|Qε|

∣∣∣
ε=0+

=

∫
∂Q
Vn dH1(43)

d

dε

(
λ1(Qε)

)∣∣∣
ε=0+

= −
∫
∂Q
Vn|∇u|2 dH1 ,(44)

u being the first eigenfunction of Q− normalized so that
∫
Q−

u2 = 1.

The r.h.s. of (43) is immediately computed as∫
∂Q−

Vn dH1 = 4

∫
S
Vn dH1

= 4
[ ∫ x0

0

(
a
t

x0

)√
2 dt+

∫ 1

x0

(
a

1− t
1− x0

)√
2 dt
]

= 2
√

2 a

In order to compute the r.h.s. of (44), we exploit the knowledge of the explicit expression
of u according to (39). In particular, the evaluation of |∇u|2 on S gives∣∣∇u(x, 1− x)

∣∣2 = π2 sin2
(
πx
)

∀x ∈
[
0, 1
]
.

Therefore,∫
∂Q−

|∇u|2Vn dH1 = 4

∫
S
|∇u|2Vn dH1

= 4
[ ∫ x0

0

[
π2 sin2

(
πt
)](

a
t

x0

)√
2 dt

+

∫ 1

x0

[
π2 sin2

(
πt
)](

a
1− t

1− x0

)√
2 dt
]

= 4π2a
√

2
{ 1

x0

∫ x0

0
sin2

(
πt
)
t dt+

1

1− x0

∫ 1

x0

sin2
(
πt
)

(1− t) dt

= π2a
√

2
[
1 +

sin2(πx0)

π2x0(1− x0)

]
.

Inserting these expressions and the equalities |Q−| = 2, λ1(Q−) = π2 into (42), we get

d

dε

(
λ1(Qε)|Qε|

)∣∣∣
ε=0+

= −2a
√

2
sin2(πx0)

x0(1− x0)
.

which yields the statement. �
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5.2. The confidence region arbitrarily close to the extremities of S.

Proposition 18. Let θ ∈ (0, π4 ) be a fixed angle. There exists a computable value h =

h(θ) > 0 such that, for all points (a, b) of the form ( 1
1+tan(θ) + h cos θ, tan(θ)

1+tan(θ) + h sin θ)

(see Figure 4, left), it holds

(45) λ1

(
Ω(a,b)

)∣∣Ω(a,b)

∣∣ < 2π2 if h ∈ (0, h) .

In particular, inequality (45) is satisfied for (a, b) belonging to the region represented in
grey in Figure 4, right.

1

b

tan(θ)
1+tan(θ)

1
1+tan(θ)

a

θ

h

Out[3]=

Figure 4. Geometry of Proposition 18 and related confidence region

Proof. To prove the statement, we are going to construct a test function U ∈ H1
0 (Ω(a,b))

whose Rayleigh quotient multiplied by the area of Ω(a,b) satisfies

(46) Ψ(a, b) :=

∫
Ω(a,b)

|∇U |2∫
Ω(a,b)

|U |2
∣∣Ω(a,b)

∣∣ < 2π2 .

for all points (a, b) as in the statement, i.e., of the form ( 1
1+tan(θ) +h cos θ, tan(θ)

1+tan(θ) +h sin θ),

with h ∈ (0, h).
Notice that when writing (a, b) in such a form, the parameter h represents the distance
between (a, b) and the intersection point of the straight lines y = 1 − x and y = tan(θ)x
(see Figure 4 left).
We define U as the axisymmetric function given on Ω+

(a,b) := Ω(a,b) ∩ {x1 ≥ 0, x2 ≥ 0} by

U(X1, X2) :=

u(T ′(x1, x2)) if (X1, X2) ∈ R′ := Ω+
(a,b) ∩ {x2 ≥ tan(θ)x1}

u(T ′′(x1, x2)) if (X1, X2) ∈ R′′ := Ω+
(a,b) ∩ {x2 ≤ tan(θ)x1} ,
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where u is the first Dirichlet eigenfunction of Q− according to (39), and T ′, T ′′ are the
affine transformations defined respectively by

T ′(x1, x2) =
(a
l
x1,

b− (1− l)
l

x1+x2

)
and T ′′(x1, x2) =

(
x1+

a− l
1− l

x2,
b

1− l
x2

)
.

Here we have introduced for brevity the parameter

l = l(θ) :=
1

1 + tan(θ)
,

so that the straight lines y = 1− x and y = tan(θ)x meet at (l, 1− l).
Notice that T ′ and T ′′ are uniquely determined by the conditions

T ′(0, 0) = (0, 0)

T ′(0, 1) = (0, 1)

T ′(l, 1− l) = (a, b)

and


T ′′(0, 0) = (0, 0)

T ′′(1, 0) = (1, 0)

T ′′(l, 1− l) = (a, b) .

Let us compute the Rayleigh quotient of U as a function of h. We have∫
Ω(a,b)

U2 = 4

∫
Ω+(a,b)

U2 = 4

∫
R′
U2 + 4

∫
R′′
U2 = f1(h) + f2(h) ,

with

f1(h) :=
2a

l

∫ l

0
dx1

∫ 1−x1

x1 tan(θ)
[cos(πx1) + cos(πx2)

]2
dx2

f2(h) :=
2b

1− l

∫ 1−l

0
dx2

∫ 1−x2

x2 cot(θ)
[cos(πx1) + cos(πx2)

]2
dx1 .

Clearly the integrals which appear in the above equations do not depend on h and can be
easily computed in terms of θ. Taking also into account that a and b are affine functions of
h, we see that f1(h) and f2(h) are first order polynomials in h (with coefficients depending
on θ). Their explicit expressions read:

f1(h) = (4π2)−1
[
5 cos

(
2π

tan(θ)+1

)
+ cos

(
2π tan(θ)
tan(θ)+1

)
+

32 cos2
(

π
tan(θ)+1

)
cot(θ)−1 − 2 cot(θ) sin2

(
π tan(θ)
tan(θ)+1

)
+2 sin2

(
π

tan(θ)+1

) (
5 tan(θ) + sec2(θ)

)
+ 4π2 − 6

] (
h cos(θ) + 1

tan(θ)+1

)
and

f2(h) = (16π2(tan(θ)− 1))−1
[
32(tan(θ) + 1) cos

(
2π

cot(θ)+1

)
+2 csc2(θ) sec2(θ)

(
2
(
π2 − 2

)
sin(2θ)− π2 sin(4θ)

+ cos(4θ)
(

cos
(

2π
tan(θ)+1

)
+ π2 − 7

)
+(2 sin(4θ) + 1) cos

(
2π

tan(θ)+1

)
− π2 + 5

)](
h sin(θ) + tan(θ)

tan(θ)+1

)
.

We now turn to the computation of the integral of |∇U |2. We exploit the identities

|∇U |2 =
( ∂u
∂x1

∂x1

∂X1
+

∂u

∂x2

∂x2

∂X1

)2
+
( ∂u
∂x1

∂x1

∂X2
+

∂u

∂x2

∂x2

∂X2

)2

=
∣∣∣∂(X1, X2)

∂(x1, x2)

∣∣∣−2[( ∂u
∂x1

∂X2

∂x2
− ∂u

∂x2

∂X2

∂x1

)2
+
(
− ∂u

∂x1

∂X1

∂x2
+

∂u

∂x2

∂X1

∂x1

)2]
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So we obtain∫
Ω(a,b)

|∇U |2 = 4

∫
Ω+(a,b)

|∇U |2 = 4

∫
R′
|∇U |2 + 4

∫
R′′
|∇U |2 = g1(h) + g2(h)

with

g1(h) :=
2π2l

a

∫ l

0
dx1

∫ 1−x1

x1 tan(θ)

[(
− sin(πx1) + sin(πx2)

b− (1− l)
l

)2
+
(

sin(πx2)
a

l

)2]
dx2

and

g2(h) :=
2π2(1− l)

b

∫ 1−l

0
dx2

∫ 1−x2

x2 cot(θ)

[(
sin(πx1)

b

1− l

)2
+
(

sin(πx1)
a− l
1− l

−sin(πx2)
)2]

dx1 .

Recalling again that a and b are affine in h, we see that g1 and g2 are rational functions
of h, and precisely that each of them is the quotient of a second order polynomial in h
by a first order polynomial in h. By computing explicitly the integrals above, we get the
following explicit expressions:

g1(h) =
[
4
(
h cos(θ) + 1

tan(θ)+1

) ]−1{
− h2 tan(θ)(csc(θ)+sec(θ))2

2(tan(θ)+1)2

[
− 2

(
1 + π2

)
sin(2θ)

+(sin(2t)− cos(2θ) + 1) cos
(

2π
tan(θ)+1

)
+ (sin(2θ) + cos(2θ) + 1) cos

(
2π tan(θ)
tan(θ)+1

)
− 2
]

+4h
[
− 2 sin(θ) sin2

(
π

tan(θ)+1

)
− 2 sin(θ) cos2(θ) sec(2θ)

(
cos
(

2π
tan(θ)+1

)
+ 3
)

+ cos(θ)
(

π2

tan(θ)+1 + cot(θ) sin2
(
π tan(θ)
tan(θ)+1

)
+ (2 sec(2θ)− 1) sin2

(
π

tan(θ)+1

)) ]
+ (tan(θ)+1) cot(θ)

(cot(θ)+1)3

[
π2 csc2(θ)− 2 cot(θ) cos2

(
π

tan(θ)+1

)
+ (2 cot(θ) + 1) cos

(
2π

tan(θ)+1

)
+ cot2(θ)

(
− cos

(
2π tan(θ)
tan(θ)+1

)
+ 3π2 + 1

)
+ 2 cot3(θ) sin2

(
π tan(θ)
tan(θ)+1

)
− π2 − 1

]}
and

g2(h) =
[
4(h sin(θ) + h cos(θ) + 1)

]−1{
2h2(cot(θ) + 1)

[
− cos

(
2π cot(θ)
cot(θ)+1

)
+ csc(θ) sec(θ) sin2

(
π cot(θ)
cot(θ)+1

)
+ π2 + 1

]
+4h sin(θ)(cot(θ)+1)2

(tan(θ)+1)2

[
π2 tan2(θ) + tan(θ)

(
tan2(θ) + tan(θ)− 1

)
sin2

(
π

tan(θ)+1

)
+ cos

(
2π

tan(θ)+1

)
+ 24 sin4(θ) csc(4θ) + tan2(θ) sin2

(
π cot(θ)
cot(θ)+1

)
−2(tan(θ) + 1) tan(2θ) sin2

(
π

cot(θ)+1

)
+ sec(2θ)

(
2 sin2(θ)(tan(θ) + 1) cos

(
2π

cot(θ)+1

)
+ 3
)
− 4
]

−
csc(θ)(csc(θ)+sec(θ))

(
2 cos(2θ) sin2

(
π

tan(θ)+1

)
+cot(θ)

(
cos(2θ)

(
− cos

(
2π

tan(θ)+1

)
+2π2+1

)
−2π2

))
(cot(θ)+1)2

}
.

Finally, the area of |Ω(a,b)| is readily computed as a first order polynomial in h, as

|Ωa,b|(h) = 2
[
1 + h(cos(θ) + sin(θ))

]
.

By using the above expressions for f1(h), f2(h), g1(h), g2(h), and |Ωa,b|(h), we are enabled
to write explicitly the quantity Ψ(a, b) at the left hand side of (46) as a function of h, and
precisely as the quotient between a polynomial of degree 4 by a polynomial of degree 3.
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Therefore, inequality (46) holds true for h ∈ (0, h), where h is the first strictly positive
zero of a fourth order polynomial in h (vanishing at h = 0). By taking the union of
the segments (0, h) for varying θ, we obtain that inequality (45) is satisfied in the region
plotted (by the use of Mathematica) in Figure 4 right. �

5.3. The confidence region near (0, 1).

Proposition 19. For points (a, b) of the form
(
ρ cosα, 1− ρ sinα

)
, the inequality

λ1

(
Ω(a,b)

)∣∣Ω(a,b)

∣∣ < 2π2

holds true if either ρ ∈ (0, 0.06] and α ∈
[
0, π5

)
, or ρ ∈ (0, 0.1] and α ∈

[
π
5 ,

π
4

)
(see Figure

5).

1

1 +

√
2ρ sin

(
π
4
−α
)

1−ρ cosα

1− ρ(cosα−sinα)
1−ρ cosα

r

b = 1− ρ sinα

a = ρ cosα 1

Figure 5. Geometry of Proposition 19 and related confidence region (in grey)

Proof. We need to introduce some notation. For brevity, throughout the proof we denote
by Ωρ,α the octagon Ω(ρ cosα,1−ρ sinα), and by Tρ,α the rhombus (containing Ωρ,α) whose
intersection with the first quadrant is the triangle with vertices (0, 0), (0, 1) and (0, 1 + δ),
with

δ = δ(ρ, α) :=
ρ(cosα− sinα)

1− ρ cosα
=

√
2ρ sin

(
π
4 − α

)
1− ρ cosα

.
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We set

A+ := Ωρ,α ∩
{

(x, y) ∈ R+ × R+ : y ≤ −(tanα)x+ 1− δ
}

B+ := Ωρ,α ∩
{

(x, y) ∈ R+ × R+ : −(tanα)x+ 1− δ ≤ y ≤ −(tanα)x+ 1
}

C+ := Tρ,α ∩
{

(x, y) ∈ R+ × R+ : y ≥ −(tanα)x+ 1
}
,

see Figure 6 below.

A+

B+

C+

Figure 6. The regions A+, B+, and C+.

By construction, it holds

Ωρ,α ∩ (R+ × R+) =
(
Tρ,α ∩ (R+ × R+)

)
\ C+ = A+ ∪B+ .

We set A,B,C, the axisymmetric domains such that

A+ = A ∩ (R+ × R+) , B+ = B ∩ (R+ × R+) , C+ = C ∩ (R+ × R+) .

We define u ∈ H1
0 (Tρ,α) as the test function obtained by computing the first eigenfunction

of the square Q− at (x, y
1+δ ), namely

u(x, y) :=
1√
2

[
cos(πx) + cos

( πy

1 + δ

)]
,

and we set
M := max

B∪C
u

f :=

∫
Tρ,α

u2 = f(δ) = (1 + δ)

g :=

∫
Tρ,α

|∇u|2 = g(δ) =
π2

2

1 + (1 + δ)2

1 + δ
.

We finally let

r := δ cosα =

√
2ρ sin

(
π
4 − α

)
1− ρ cosα

cosα ,
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and we divide the remaining of the proof in four steps.

Step 1: We claim that the inequality λ1(Ωρ,α)|Ωρ,α| < 2π2 holds true provided the following
three estimates are satisfied

(47) M2 ≤ f

8|C|

(48)
M2

r2
≤ 4g

|Tρ,α|

(49)
2M2

r2
+ 16π2M2 + 4π2δ ≤ (4− γ)π2 , with γ ≥ 2

1− tanα

1− ρ sinα
.

In order to bound from above λ1(Ωρ,α) we consider the solution η to the following boundary
value problem in an infinite strip

∆η = 0 in {−(tanα)x+ 1− δ ≤ y ≤ −(tanα)x+ 1}
η = M on {y = −(tanα)x+ 1− δ}
η = 0 on {y = −(tanα)x+ 1} .

Clearly η depends only on the distance d from the straight line {y = −(tanα)x+ 1− δ},
and it is immediate to compute it as η(d) = −M

r d+M . In particular, we observe for later
use that

(50) η′(r) = −M
r
.

We consider the axisymmetric function w given in the first quadrant by

w :=

{
u in A+

u ∧ η := min{u, η} in B+ .

Since w ∈ H1
0 (Ωρ,α), it can be chosen as a test function in the Rayleigh quotient of

λ1(Ωρ,α):

(51) λ1(Ωρ,α)|Ωρ,α| ≤
∫
A∪B |∇w|

2∫
A∪B w

2
|Ωρ,α| .

We now estimate separately the integrals of w2 and of |∇w|2.
Recalling the definitions of f and M given above, we have:∫

A∪B
w2 = f +

∫
B

((u ∧ η)2 − u2)−
∫
C
u2 ≥ f −M2|C| −M2|B| = f

(
1− 4M2|C|

f

)
,

where the last equality follows from the geometric relation |B| = 3|C|. Hence, by exploiting
the elementary inequality 1

1−t ≤ 1 + 2t holding for t ∈ [0, 1
2 ], together with the assumed

condition (47), we obtain

(52)
1∫

A∪B w
2
≤ 1

f

(
1 +

8M2|C|
f

)
.

We now turn to the integral of |∇w|2. Similarly as above, recalling the definition of g, we
have: ∫

A∪B
|∇w|2 = g +

∫
B

(|∇(u ∧ η)|2 − |∇u|2)−
∫
C
|∇u|2
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By applying the elementary inequality |v1|2 − |v2|2 ≤ 2v1 · (v1 − v2), we get∫
B

(|∇(u∧η)|2−|∇u|2) =

∫
B∩{u>η}

(|∇(u∧η)|2−|∇u|2) ≤ 2

∫
B∩{u>η}

∇(u∧η)·∇(u∧η−u) .

We now integrate by parts. Taking into accout that η is harmonic in B, that the only
portion of ∂

(
B ∩{u > η}

)
where u− η 6= 0 is the line segment L := {y = − tan(θ)x+ 1}∩

Ωρ,α, and recalling (50), we obtain

2

∫
B
∇(u ∧ η) · ∇(u ∧ η − u) = 2

∫
B∩{u>η}

∇η · ∇(η − u)

= 2

∫
L

∂η

∂ν
(−u) =

2M

r

∫
L
u .

An integration on straight lines perpendicular to L yields∫
L
u ≤

∫
C
|∇u| .

Summarizing, we have

(53)

∫
A∪B
|∇w|2 ≤ g +

2M

r

∫
C
|∇u| −

∫
C
|∇u|2 ≤ g +

M2|C|
r2

,

where the last inequality follows by applying first the elementary inequality −a2 − b2 ≤
−2ab and then the Cauchy-Schwarz inequality.
In view of (51), (52), and (53), we have

λ1(Ωρ,α)|Ωρ,α| ≤
1

f

(
g +

M2|C|
r2

)(
|Tρ,α| − 4|C|

)(
1 +

8M2|C|
f

)
≤
[g|Tρ,α|

f
− |C|

(4g

f
− M2

r2

|Tρ,α|
f

)](
1 +

8M2|C|
f

)
≤ g|Tρ,α|

f
− |C|

(4g

f
− M2

r2

|Tρ,α|
f
− 8M2g

|Tρ,α|
f2

)
,

where the last inequality holds true thanks to the assumed condition (48).
By using the expressions of f , g, and |Tρ,α| in terms of δ, the above inequality can be
rewritten as

λ1(Ωρ,α)|Ωρ,α| ≤ 2π2 +
π2δ2

1 + δ
− |C|

(
4π2 − 2M2

r2
−

8M2π2
(
1 + (1 + δ)2

)
(1 + δ)2

− 2π2(2δ + δ2)

(1 + δ)2

)
< 2π2 +

π2δ2

1 + δ
− |C|

(
4π2 − 2M2

r2
− 16M2π2 − 4π2δ

)
≤ 2π2 +

π2δ2

1 + δ
− π2γδρ

cosα

2
.

where in the last inequality we have exploited the assumed condition (49) and the identity

|C| = δρ cosα
2 . Finally by the choice of γ, we have

γ ≥ 2

ρ cosα

δ

1 + δ
= 2

1− tanα

1− ρ sinα
,

which concludes the proof of the claim in Step 1.
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Step 2: We claim that

M
rρ ≤

π2

(1−ρ∗) sin
(
π
4
−α∗
) if ρ ∈ (0, ρ∗] and α ∈ [0, α∗](54)

M
rρ ≤ 2π2(1 + δ)

[
1 + 1

1−ρ∗
]

cosα∗ if ρ ∈ (0, ρ∗] and α ∈
[
α∗, π4

)
.(55)

Inequality (54) is obtained as follows:

M

r
≤
u
(

0, 1+δ−2(δ+ρ sinα)
1+δ

)
√

2ρ cosα sin
(
π
4
−α
)

1−ρ cosα

=
1

2

1 + cos
[
π
(

1+δ−2(δ+ρ sinα)
1+δ

)]
ρ cosα sin

(
π
4
−α
)

1−ρ cosα

≤ 1

2 sin
(
π
4 − α∗

) 1− cos
[
π
(

2(δ+ρ sinα)
1+δ

)]
ρ cosα

1−ρ cosα

=
1

2 sin
(
π
4 − α∗

) 1− ρ cosα

ρ cosα
2 sin2

[
π
(δ + ρ sinα

1 + δ

)]
≤ 1

sin
(
π
4 − α∗

) 1− ρ cosα

ρ cosα
π2
(δ + ρ sinα

1 + δ

)2

=
π2

sin
(
π
4 − α∗

) ρ cosα (1− ρ sinα)2

(1 + δ)2(1− ρ cosα)

≤ π2ρ

(1− ρ∗) sin
(
π
4 − α∗

) .
Inequality (55) is obtained as follows. Denote by

ν :=
1√

1 + (1 + δ)2

(
1 + δ, 1

)
the unit outer normal to Tρ,α along its side on the line y = (1 + δ)(1− x). Then

M

2r
≤ max

B∪C
|∇u · ν|

=
π√
2

1 + δ√
1 + (1 + δ)2

max
B∪C

∣∣∣ sin(πx) +
1

(1 + δ)2
sin
( πy

1 + δ

)∣∣∣
=

π√
2

1 + δ√
1 + (1 + δ)2

[
sin(2πρ cosα) +

1

(1 + δ)2
sin
(2π(δ + ρ sinα)

1 + δ

)]
≤ π√

2

1 + δ√
1 + (1 + δ)2

[
2πρ cosα+

2π(δ + ρ sinα)

(1 + δ)3

]
=

2π2

√
2

1 + δ√
1 + (1 + δ)2

[
ρ cosα+

1

(1 + δ)3

ρ cosα(1− ρ sinα)

1− ρ cosα

]
≤ π2(1 + δ)ρ

[
1 +

1

1− ρ∗
]

cosα∗ .
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We point out that the first inequality above is obtained by estimating u along the edge
(B+ ∪ C+) ∩ {(x, y) : x = 0} via Lagrange Theorem.

Step 3: We claim that the estimates (47)-(48)-(49) are satisfied for ρ ≤ 0.1 and α ∈ [π5 ,
π
4 ].

With the help of (55), let us firstly check that (49) is satisfied with γ = 0.608. Such choice
of γ is motivated by the inequality

0.608 ≥ 2
1− tan

(
π
5

)
0.9

≥ 2
1− tanα

1− ρ sinα
∀ρ ∈ [0, 0.1], ∀α ∈

[π
5
,
π

4

]
.

For such value of γ, inequality (49) reads

(56)
2M2

r2
+ 16π2M2 + 4π2δ ≤ 3.392π2 .

We observe that, for all ρ ∈ [0, 0.1] and α ∈
[
π
5 ,

π
4

]
, there holds

(57) δ =

√
2ρ sin

(
π
4 − α

)
1− ρ cosα

≤
√

2 sin
( π

20

)0.1

0.9
≤ 0.0246

and

(58) r = δ cosα ≤
√

2 sin
( π

20

)
cos
(π

5

)0.1

0.9
≤ 0.0199 .

By using (57), (58), and the estimate (55) (with ρ∗ = 0.1 and α∗ = π
5 ), we obtain:

4π2δ ≤ 0.099π2

16π2M2 ≤ π2
[
64π4r2ρ2(1 + δ)2

(
1 +

1

0.9

)2
cos2

(π
5

)]
≤ 0.757π2

2M2

r2
≤ π2

[
8π2ρ2(1 + δ)2

(
1 +

1

0.9

)2
cos2

(π
5

)]
≤ 2.418π2

and eventually

2M2

r2
+ 16π2M2 + 4π2δ ≤ (2.418 + 0.757 + 0.099)π2 < 3.392π2 ,

which ensures (56) and hence (49). The inequalities obtained above for the terms 16π2M2

and 2M2

r2
readily imply that also the inequalities (47) and (48) are satisfied.

Step 4: We claim that the estimates (47)-(48)-(49) are satisfied for ρ ≤ 0.06 and α ∈ [ π12 ,
π
4 ].

We proceed in a similar way as above. Since

2.128 ≥ 2
1

1− 0.06
≥ 2

1− tanα

1− ρ sinα
∀ρ ∈ [0, 0.06], ∀α ∈

[ π
12
,
π

4

]
,

let us check that (49) is satisfied with γ = 2.128. For such value of γ, inequality (49) reads

(59)
2M2

r2
+ 16π2M2 + 4π2δ ≤ 1.872π2 .

We observe that, for all ρ ∈ [0, 0.06] and α ∈
[
π
12 ,

π
4

]
, there holds

(60) δ =

√
2ρ sin

(
π
4 − α

)
1− ρ cosα

≤
√

2 sin
(π

6

)0.06

0.94
≤ 0.046
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and

(61) r = δ cosα ≤
√

2 sin
(π

6

)
cos
( π

12

)0.06

0.94
≤ 0.044 .

By using (60), (61), and the estimate (55) (with ρ∗ = 0.06 and α∗ = π
12), we obtain:

4π2δ ≤ 0.184π2

16π2M2 ≤ π2
[
64π4r2ρ2(1 + δ)2

(
1 +

1

0.94

)2
cos2

( π
12

)]
≤ 0.189π2

2M2

r2
≤ π2

[
8π2ρ2(1 + δ)2

(
1 +

1

0.94

)2
cos2

( π
12

)]
≤ 1.236π2

and eventually

2M2

r2
+ 16π2M2 + 4π2δ ≤ (1.236 + 0.189 + 0.184)π2 < 1.872π2 ,

which ensures (59) and hence (49). Also in this case, the inequalities obtained above for

the terms 16π2M2 and 2M2

r2
readily imply that the weaker inequalities (47) and (48) are

satisfied.

Step 5: We claim that the estimates (47)-(48)-(49) are satisfied for ρ ≤ 0.06 and α ∈ [0, π12 ].
We still have

2.128 ≥ 2
1

1− 0.06
≥ 2

1− tanα

1− ρ sinα
∀ρ ∈ (0, 0.06], ∀α ∈

[
0,
π

12

]
,

so we need to check that, as in Step 4, the inequality (59) is satisfied. Now, for ρ ∈ (0, 0.06]
and α ∈

[
0, π12

]
, there holds

(62) δ =

√
2ρ sin

(
π
4 − α

)
1− ρ cosα

≤
√

2 sin
(π

4

)0.06

0.94
≤ 0.06383

and

(63) r = δ cosα ≤ δ ≤ 0.06383 .

By using (62), (63), and the estimate (54) (with ρ∗ = 0.06 and α∗ = π
12), we obtain:

4π2δ ≤ 0.256π2

16π2M2 ≤ π2
[
16π4r2ρ2

(
0.94

)−2
sin−2

(π
6

)]
≤ 0.1035π2

2M2

r2
≤ π2

[
2π2ρ2

(
0.94

)−2
sin−2

(π
6

)]
≤ 0.3217π2

and eventually

2M2

r2
+ 16π2M2 + 4π2δ ≤ (0.3217 + 0.1035 + 0.256)π2 < 1.872π2 ,

which ensures (59) and hence (49). As usual, also the weaker estimates (47) and (48) are
satisfied. �
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Out[25]= Out[30]=

Figure 7. Analysis region on the left, analytically identified confidence
zone on the right.

6. Numerical computations outside the confidence zones

For symmetry reasons, it is enough to consider only the octagons Ω(x,y), for (x, y) belonging
to the region in Figure 7, left. Following the analytical results obtained in Sections 4 and
5, the confidence zone has a geometry which is displayed in Figure 7, right. The remaining,
non-confidence region, is covered with computational squares of different sizes, e.g. ABCD.

A

C

A B

CD

(x, y)

1

1

Figure 8. Clearing the square ABCD.

In order to prove that the analytic inequality holds true for every Ω(x,y) with (x, y) ∈
ABCD, we use the following chain of inequalities

λ1(Ω(x,y))|Ω(x,y)| ≤ λ1(ΩA)|ΩC | ≤ λnum1 (ΩA)|ΩC |.
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The first inequality holds true since the Dirichlet eigenvalue is decreasing for domain in-
clusions, while the measure is increasing. In the second inequality, λnum1 (ΩA) stands for
the numerically computed value. This inequality is also true, as a consequence of the
numerical method itself. We use finite elements approximation for λ1(ΩA) with a trian-
gular mesh which fits precisely with the octagon ΩA, with no boundary approximation.
Since the finite elements functional space P1 of affine functions is strictly contained in
the Sobolev space H1

0 (ΩA), as a consequence of the Rayleigh quotient formulation for the
first eigenvalue, the numerically computed value λnum1 (ΩA) will not be smaller than the
analytical value λ1(ΩA). The numerically computed value is expected to be “exact”, in
the sense that the numerical computation produces an effective piecewise affine function
which formally can be taken as test function in the Rayleigh quotient for the octagon, and
the computation of the Rayleigh quotient associated to this function is exact.
Finally, it is enough to find a suitable covering of the non-confidence zone by computational
squares ABCD, and to prove that for every such a square the following inequality holds

(64) 0 < 2π2 − λnum1 (ΩA)|ΩC |.
As one can easily notice, larger the size of the rectangle is, the deviation of λnum1 (ΩA)|ΩC |
from the product λ1(Ω(x,y))|Ω(x,y)| is higher, leading to a possible value above 2π2.
From a practical point of view, we cover the complement of the confidence zone with
square blocks of size between 10−2 and 10−1. Each of these blocks is divided in 1 to 104

smaller computational squares ABCD, depending on how far away it lays from the critical
region. The confidence region being very narrow near the upper vertex of the segment S,
the size of the computational squares is 10−4 (see Figures 9 and 10).
The heaviest computation occurred for the square block with a lower-left vertex in (0.06, 0.95)
and size 10−2, which was divided in 104 computational squares and required 1 hour of
computations on a 1.8 GHz computer with 4 Go Ram using MATLAB 1 and the Partial
Differential Equation Toolbox. On the opposite, the square block with lower-left corner at
(0.6, 0.7) and size 10−1 was divided in 25 computational squares and required 10 seconds
of computation. Computations are done with double precision (15 to 17 exact digits) and
the rule to decide that inequality (64) holds true is that the first non zero digit in the
right hand side occurs at most at the order 10−4.
In Figure 10, we notice the presence of three triangular regions T1, T2, T3 outside the
confidence zone and not covered by any block of size 10−2. They are treated individually,
each one being covered by a small square with minimal size in order to minimize the
computation time.
All the results of the computations are available at http://www.lama.univ-savoie.fr/

~bucur/computations/.
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