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Abstract. We consider the Steklov problem for the linear biharmonic equa-
tion. We survey existing results for the positivity preserving property to hold.
These are connected with the first Steklov eigenvalue. We address the problem
of minimizing this eigenvalue among suitable classes of domains. We prove the
existence of an optimal convex domain of fixed measure.
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1. The Kirchhoff-Love model for a thin plate

Consider a plate, the vertical projection of which is the planar region Ω ⊂ R2. A
simple model for its elastic energy is

J(u) =

∫
Ω

(
1
2 (∆u)

2
+ (1− σ)

(
u2
xy − uxxuyy

)
− f u

)
dxdy, (1.1)

where f is the external vertical load and u is the deflection of the plate in vertical
direction. First order derivatives do not appear in (1.1), which indicates that the
plate is free to move horizontally. In (1.1) σ is the Poisson ratio given by σ = λ

2(λ+µ)

with the so-called Lamé constants λ, µ that depend on the material. Usually, µ > 0
and λ ≥ 0 so that 0 ≤ σ < 1

2 . However, some exotic materials have a negative
Poisson ratio, see [19]. In any case, it always holds true that

−1 < σ < 1, (1.2)

see [22]. Notice that for σ > −1 the quadratic part of the functional J is positive.

The somehow modern variational formulation in (1.1) is due to Friedrichs
[11] in 1927, although a discussion for a boundary value problem for a thin elastic
plate in an old fashioned notation was made much earlier, in 1850, by Kirchhoff
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[16]. For hinged plates the natural boundary conditions lead to minimize J in the
Hilbert space H2∩H1

0 (Ω). In turn, this leads to the weak Euler-Lagrange equation∫
Ω

(∆u∆v + (1− σ) (2uxyvxy − uxxvyy − uyyvxx)− f v) dxdy = 0

for all v ∈ H2 ∩H1
0 (Ω). Formally, an integration by parts gives

0 =

∫
Ω

(
∆2u− f

)
v dxdy +

∫
∂Ω

(
∂

∂ν
∆u

)
v ds

+ (1− σ)

∫
∂Ω

((
ν2

1 − ν2
2

)
uxy − ν1ν2 (uxx − uyy)

) ∂

∂τ
v ds

+

∫
∂Ω

(
∆u+ (1− σ)

(
2ν1ν2uxy − ν2

2uxx − ν2
1uyy

) ) ∂

∂ν
v ds.

On ∂Ω we have u = 0 and we may rewrite the second boundary condition that
appears from the above integral as

∆u+ (1− σ)
(
2uxyν1ν2 − uxxν2

2 − uyyν2
1

)
= σ∆u+ (1− σ)

(
2uxyν1ν2 + uxxν

2
1 + uyyν

2
2

)
= σ∆u+ (1− σ)uνν = σ (uνν + κuν) + (1− σ)uνν

= uνν + σκuν = ∆u− (1− σ)κuν .

Here κ is the curvature of the boundary, with the sign convention that κ ≥ 0 for
convex boundary parts and κ ≤ 0 for concave boundary parts.

Written in a strong form, the above equation and boundary conditions be-
come {

∆2u = f in Ω,
u = ∆u− (1− σ)κuν = 0 on ∂Ω.

(1.3)

The differential equation ∆2u = f is called the Kirchhoff-Love model [16, 22] for
the vertical deflection of a thin elastic plate, whereas the boundary conditions are
named after Steklov due the first appearance in [31]. In this situation, with an
integration by parts, the elastic energy J in (1.1) becomes

J(u) =

∫
Ω

(
1
2 (∆u)

2 − f u
)
dx− 1− σ

2

∫
∂Ω

κu2
ν dω. (1.4)

Minimizers of this functional over H2 ∩H1
0 (Ω) are weak solutions to (1.3).

Several different aspects of (1.3) are of some interest. Firstly, the so-called
positivity preserving property, namely conditions which ensure that the deflection
u has the same sign as the the vertical load f . In Section 2 we survey results in this
respect, in any bounded domain Ω ⊂ Rn (n ≥ 2). If the coefficient d = (1− σ)κ is
assumed to be constant (which occurs if Ω is a ball or in presence of heterogeneous
materials having nonconstant Poisson ratio σ), it turns out that a crucial role is
played by the first Steklov eigenvalue, namely the smallest value of d for which
(1.3) admits nontrivial solutions for f = 0. In Section 3 we recall a duality principle
due to Fichera [10] and its generalization due to Bucur-Ferrero-Gazzola [5] which
relates this eigenvalue with a priori L2-estimates for harmonic functions in Ω.
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Then, in Section 3, we turn to the optimization of the first Steklov eigenvalue in
suitable classes of domains. We recall that two conjectures were disproved and no
Faber-Krahn-type result holds in general domains. Finally, Theorem 4.6 contains
the main original contribution of the present paper, namely the existence of an
optimal domain which minimizes the Steklov eigenvalue among convex domains of
given measure. We prove this result by showing that the first Steklov eigenvalue is
continuous with respect to Hausdorff convergence of convex domains (see Theorem
5.1), a statement which is not straightforward due to the lack of a trivial extension
operator in the space H2 ∩H1

0 . We combine this continuity with some estimates
by Payne [25] which enable us to apply Blaschke selection Theorem.

2. Positivity preserving

Throughout this section, Ω is a bounded domain of Rn (n ≥ 2) with ∂Ω ∈ C2. Let
a ∈ C0(∂Ω), f ∈ L2(Ω), and consider the boundary value problem{

∆2u = f in Ω,
u = ∆u− auν = 0 on ∂Ω.

(2.1)

We say that u is a weak solution to (2.1) if u ∈ H2 ∩H1
0 (Ω) and∫

Ω

∆u∆v dx−
∫
∂Ω

a uνvν dω =

∫
Ω

fv dx for all v ∈ H2 ∩H1
0 (Ω).

Let us mention that standard elliptic regularity results are available, see [13].
In this section we are interested in finding conditions on Ω and on a such

that the assumption f ≥ 0 implies that the solution u exists and is positive. For
any continuous function φ, the notation φ 	 0 means φ(x) ≥ 0 for all x and φ 6≡ 0.
If φ is not continuous the same is intended a.e.

Consider the set H := [H2 ∩H1
0 ] \H2

0 (Ω) and define

d1(Ω) := inf
u∈H

∫
Ω

|∆u|2 dx∫
∂Ω

u2
ν dω

. (2.2)

The infimum is achieved and d
−1/2
1 is the norm of the compact linear operator

H2 ∩H1
0 (Ω)→ L2(∂Ω) u 7→ uν |∂Ω.

Note that with a suitable scaling, for any bounded domain Ω and any k > 0, one
has

d1(kΩ) = k−1d1(Ω). (2.3)

The number d1 in (2.2) represents the least Steklov eigenvalue, namely the smallest
constant value of a for which (2.1) admits a nontrivial solution whenever f = 0.
In fact, there exists a countable set of eigenvalues. We refer to [9] for a fairly com-
plete study of the spectrum and to [21] for a corresponding Weyl-type asymptotic
behaviour.
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The following result holds

Theorem 2.1 ([3]). Let a ∈ C0(∂Ω), f ∈ L2(Ω), and consider the problem{
∆2u = f in Ω,
u = ∆u− auν = 0 on ∂Ω.

If a < d1 it admits a unique solution u ∈ H2 ∩H1
0 (Ω). If also a ≥ 0 and f 	 0,

then the solution u is strictly superharmonic in Ω.

The previous statement proves superharmonicity of the solution, a much
stronger condition than positivity. If we relax the lower bound for a, we may
still have positivity preserving. Here we denote by d∂Ω = d∂Ω(x) > 0 the distance
function from x ∈ Ω to ∂Ω.

Theorem 2.2 ([14]). Let a ∈ C0(∂Ω), f ∈ L2(Ω), and consider the problem (2.1).
There exists δc := δc(Ω) ∈ [−∞, 0) such that:
1. If a ≥ d1 and if 0 � f ∈ L2(Ω), then (2.1) admits no positive solutions.
2. If a = d1, then (2.1) admits a positive eigenfunction u1 > 0 in Ω for f = 0.
Moreover, u1 is unique up to multiples.
3. If a � d1, then for all f ∈ L2(Ω) there exists a unique solution u to (2.1).
4. If δc ≤ a � d1, then 0 � f ∈ L2(Ω) implies u 	 0 in Ω.
5. If δc < a � d1, then 0 � f ∈ L2(Ω) implies u ≥ cf d∂Ω in Ω for some cf > 0.
6. If a < δc, then there are 0 � f ∈ L2(Ω) with 0 � u.
7. If Ω = B, the unit ball, then δc = −∞.

Going back to the hinged plate model discussed in Section 1, the previous
results allow to prove the positivity preserving property for the hinged plate in
planar convex domains. Recall that the physical bounds for the Poisson ratio are
given in (1.2).

Corollary 2.3 ([24]). Let Ω ⊂ R2 be a bounded convex domain with ∂Ω ∈ C2,1

and assume (1.2). Then for all f ∈ L2(Ω) there exists a unique u ∈ H2 ∩H1
0 (Ω)

minimizer of the elastic energy functional J defined in (1.4). The minimizer u is
the unique weak solution to (1.3). Moreover, f 	 0 implies that there exists cf > 0

such that u ≥ cf d∂Ω and u is strictly superharmonic in Ω.

3. A priori estimates for harmonic functions

Let Ω ⊂ Rn be a bounded domain with ∂Ω ∈ C2. Let g ∈ L2(∂Ω) and consider
the problem {

∆v = 0 in Ω
v = g on ∂Ω .

We are here interested in the optimal constant δ1(Ω) for the a priori estimate

δ1(Ω) · ‖v‖2L2(Ω) ≤ ‖g‖
2
L2(∂Ω).
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In order to characterize variationally δ1, we introduce the space

H := closure of {v ∈ C2(Ω); ∆v = 0 in Ω} w.r.t. the norm ‖ · ‖L2(∂Ω). (3.1)

Then we define

δ1 = δ1(Ω) := inf
h∈H\{0}

∫
∂Ω

h2 dω∫
Ω

h2 dx

. (3.2)

The infimum is achieved. To see this, combine the continuous map (for weakly
harmonic functions) H−1/2(∂Ω) ⊂ L2(Ω) (see Theorem 6.6 in Chapter 2 in [20])
with the compact embedding L2(∂Ω) ⊂ H−1/2(∂Ω).

Fichera’s principle of duality reads

Theorem 3.1 ([10]). If ∂Ω ∈ C2, then δ1(Ω) = d1(Ω).

It is shown in [10] that u 	 0 minimizes d1 in (2.2) if and only if h = −∆u
minimizes δ1 in (3.2). One then wonders whether this principle remains true also
if ∂Ω 6∈ C2. Following Adolfsson [1] we say that an open domain Ω ⊂ Rn satisfies
the outer ball condition if for each x ∈ ∂Ω there exists an open ball BR ⊂ Rn \ Ω
such that x ∈ ∂BR. We say that it satisfies a uniform outer ball condition if the
radius R of the ball BR can be taken independently of x ∈ ∂Ω. Clearly, if ∂Ω is
smooth (C2) or if Ω is convex, then Ω satisfies the uniform outer ball condition.
Theorem 3.1 may be extended to this class of domains. We first state

Theorem 3.2 ([5]). Assume that Ω ⊂ Rn is open bounded with Lipschitz bound-
ary which satisfies a uniform outer ball condition. Then d1(Ω) admits a positive
minimizer u ∈ [H2 ∩H1

0 (Ω)]\H2
0 (Ω) which is unique up to a constant multiplier.

This result appears somehow sharp since, in view of [23], we believe that a
minimizer might not exist in domains with a concave corner. We are now ready to
generalize Fichera’s principle of duality to nonsmooth domains.

Theorem 3.3 ([5]). If Ω ⊂ Rn is open bounded with Lipschitz boundary, then δ1(Ω)
admits a minimizer h ∈ H\{0}. If we also assume that Ω satisfies a uniform outer
ball condition then this minimizer is positive, unique up to a constant multiplier
and δ1 (Ω) = d1 (Ω).

4. Minimization of the first Steklov eigenvalue

From [4] we first recall that for the second order Steklov problem

∆u = 0 in Ω , uν = λu on ∂Ω ,

the first (nontrivial) eigenvalue satisfies λ1(Ω) ≤ λ1(Ω∗), where Ω∗ denotes a ball
having the same measure as Ω. However, as we shall see, the fourth order Steklov
problem appears completely different.

Smith [29] conjectures that a Faber-Krahn-type inequality also holds for the
first Steklov eigenvalue
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Conjecture 4.1 ([29]). For any bounded domain Ω ⊂ R2, one has

d1(Ω) ≥ d1(Ω∗). (4.1)

Smith [29] also gives a proof of Conjecture 4.1. However, in the “Note added
in proof” Smith [30] writes that Kuttler and Sigillito pointed out that his proof
contains a gap. Smith then concludes by saying that

Although the result is probably true, a correct proof has not yet been found.

From [3] we know that d1(B) = n, where B is the unit ball in Rn. Hence, in
particular, for planar domains Ω of measure π (as the unit disk), (4.1) would mean
that d1(Ω) ≥ 2. A couple of years later, Kuttler [17] showed that for the square
Q√π = (0,

√
π)2 one has

d1(Q√π) < 1.9889...

This estimate was subsequently improved in [9] by

d1(Q√π) < 1.96256. (4.2)

Therefore, (4.1) is false. For this reason, Kuttler [17] suggests a different and weaker
conjecture.

Conjecture 4.2 ([17]). Let Ω ⊂ Rn be a smooth bounded domain such that |∂Ω| =
|∂B|, where |·| represents the (n−1)-Hausdorff measure. Then, n = d1(B) ≤ d1(Ω).

Kuttler gives numerical results on some rectangles which support this con-
jecture. However, also Conjecture 4.2 is false.

Theorem 4.3 ([5]). Let Dε = {x ∈ R2; ε < |x| < 1} and let Ωε ⊂ Rn (n ≥ 2) be
such that

Ωε = Dε × (0, 1)n−2 ;

in particular, if n = 2 we have Ωε = Dε. Then,

lim
ε→0+

d1 (Ωε) = 0.

Theorem 4.3 disproves Conjecture 4.2: it is not true that the ball has the
smallest d1 among all domains having the same perimeter.

As a straightforward consequence of Theorem 4.3 we have

Corollary 4.4. Let BR = {x ∈ Rn; |x| < R}. Then

inf
Ω⊆BR

d1 (Ω) = 0

where the infimum is taken over all domains Ω ⊆ BR such that ∂Ω ∈ C∞ if n = 2
and ∂Ω is Lipschitzian if n ≥ 3.

Clearly, the different geometric properties in dimensions n = 2 and n ≥ 3
are due to the shape of Ωε in Theorem 4.3. One may then wonder about what
happens in annuli in any space dimension n ≥ 2. It is shown in [5, Theorem 5]
that a strange phenomenon appears, the limit when the interior ball shrinks to a
point is discontinuous with respect to n which is seen as a real parameter since
radial functions are involved.
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The homogeneity property (2.3) shows that d1(kΩ)→ 0 as k →∞. This sug-
gests that d1(Ω) becomes “smaller” when the domain Ω becomes “larger”. How-
ever, in view of Theorem 4.3, we know that the map Ω 7→ d1(Ω) is not monotone
decreasing with respect to domain inclusion. This fact makes the minimization
problem very delicate.

When ∂Ω has positive mean curvature a lower bounds for d1 is available:

Theorem 4.5 ([9, 26]). Let Ω be a bounded domain of Rn (n ≥ 2) with ∂Ω ∈ C2.
Let κ(x) denote the mean curvature at x ∈ ∂Ω and assume that

κ := min
x∈∂Ω

κ(x) > 0.

Then d1(Ω) ≥ nκ with equality holding if and only if Ω is a ball of radius κ−1.

Recently, Wang-Xia [33] have extended Theorem 4.5 to compact manifolds
with boundary. Theorem 4.5 seems to say that the infimum of d1 in the class
of convex domains might be strictly positive. And this fact, together with some
related improved Hardy inequalities which hold when Ω is strictly starshaped (see
[2]), suggests to restrict the class of admissible domains for the shape optimization
problem. We answer positively to [9, Problem 3] and we prove

Theorem 4.6. Among all convex domains in Rn having the same measure as the
unit ball B, there exists an optimal one, minimizing d1.

Theorem 4.6 should be complemented with the description of the optimal
convex shape. This appears quite challenging since, in view of (4.2), we know that
the optimal planar domain is not a disk.

5. Proof of Theorem 4.6

The first step of the proof consists in showing the continuity of the map Ω 7→ d1(Ω),
a fact which does not appear trivial since there is no monotonicity with respect to
inclusions and no obvious extension operator from H2 ∩H1

0 (Ω) to H2(Rn). It was
proved in [5] that d1 is continuous with respect to C2-diffeomorphism of Rn. Here,
we prove the same result in a much weaker topology for convergence of domains.
We emphasize that it is essential for the domains to be convex, see Theorem 4.3.

Theorem 5.1. In the class of bounded convex domains, the map Ω 7→ d1(Ω) is
continuous with respect to Hausdorff convergence of domains.

Proof. We show both upper and lower semicontinuity of the map Ω 7→ d1(Ω).
To this end, consider a sequence of bounded convex domains {Ωm} such that
Ωm → Ω in the Hausdorff topology, for some bounded convex domain Ω. Up to a
finite number of Ωm, we know that there exist 0 < r < R such that Br ⊂ Ωm ⊂ BR
for all m.

Upper semicontinuity. By Theorem 3.3, we can show that the map Ω 7→ δ1(Ω)
is upper semicontinuous. Consider a sequence {tm} ⊂ (0, 1) such that tm → 1
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and tmΩm ⊂ Ω for all m. Since tmΩm → Ω in the Hausdorff topology, for any
h ∈ C2(Ω) such that h 6≡ 0 and ∆h = 0 in Ω we have∫

tmΩm

h2 dx→
∫

Ω

h2 dx ,

∫
∂(tmΩm)

h2 dω →
∫
∂Ω

h2 dω .

Hence, by the variational characterization of δ1 in (3.2),∫
∂Ω

h2 dω∫
Ω

h2 dx

= lim
m→∞

∫
∂(tmΩm)

h2 dω∫
tmΩm

h2 dx

≥ lim sup
m→∞

δ1(tmΩm) . (5.1)

By (2.3) and Theorem 3.3 we know that δ1(tmΩm) = t−1
m δ1(Ωm). Moroever, (5.1)

holds for any h as above. Hence, by considering the space H defined in (3.1) and
by taking the infimum of the l.h.s. in (5.1), by (3.2) we infer

δ1(Ω) ≥ lim sup
m→∞

δ1(Ωm).

This proves upper semicontinuity of Ω 7→ δ1(Ω).

Lower semicontinuity. For any m, let um ∈ H2 ∩ H1
0 (Ωm) be a normalized first

eigenfunction of the Steklov problem in Ωm, that is∫
∂Ωm

(um)2
ν dω = 1 , d1(Ωm) =

∫
Ωm

|∆um|2 dx .

By the just proved upper semicontinuity, we know that there exists K1 > 0 such
that

∫
Ωm
|∆um|2 ≤ K1 for all m. Hence, by [12, Corollary 1], there exists K2 > 0

(independent of m since Ωm ⊂ BR) such that

‖um‖H2(Ωm) ≤ K2 . (5.2)

Since Ω is convex, it satisfies an interior cone property. Since Ωm → Ω, all the Ωm
satisfy a (uniform) interior cone property so that, by [6, Theorem II.1], there exist
extensions ûm ∈ H2(BR) such that ûm = um in Ωm and ‖ûm‖H2(BR) ≤ K3 for

some K3 > 0, independent of m. Therefore there exists û ∈ H2(BR) such that, up
to a subsequence, ûm ⇀ û in H2(BR) and

ûm → û in H1(BR), ∇ûm → ∇û and ûm → û a.e. in BR. (5.3)

The pointwise convergence tells us that u ∈ H2 ∩ H1
0 (Ω), where u is the restric-

tion of û to Ω. Let χm and χ denote the characteristic functions of Ωm and Ω
respectively. Take any ϕ ∈ C∞c (BR) and let us estimate

Im :=

∣∣∣∣∫
BR

(χm∆ûm − χ∆û)ϕdx

∣∣∣∣
≤

∣∣∣∣∫
BR

(∆ûm −∆û)χmϕdx

∣∣∣∣+

∣∣∣∣∫
BR

(χm − χ)ϕ∆û dx

∣∣∣∣ .
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Since χmϕ→ χϕ in L2(BR) and (∆ûm −∆û) ⇀ 0 in L2(BR), we have∣∣∣∣∫
BR

(∆ûm −∆û)χmϕdx

∣∣∣∣→ 0.

Moreover, since χm → χ in L2(BR), by Hölder’s inequality we have∣∣∣∣∫
BR

(χm − χ)ϕ∆û dx

∣∣∣∣ ≤ ‖χm − χ‖L2(BR) · ‖ϕ∆û‖L2(BR) → 0.

This shows that Im → 0 and, by arbitrariness of ϕ, that χm∆ûm ⇀ χ∆û in
L2(BR). In turn, by lower semicontinuity of the L2-norm with respect to weak
convergence, we finally obtain

lim inf
m→∞

‖∆um‖2L2(Ωm) = lim inf
m→∞

‖χm∆ûm‖2L2(BR) ≥ ‖χ∆û‖2L2(BR) =

∫
Ω

|∆u|2 dx.

At this point, we need the following convergence result, whose proof is given below:

lim
m→∞

∫
∂Ωm

(um)2
ν dω =

∫
∂Ω

u2
ν dω . (5.4)

By combining these two limits we obtain

lim inf
m→∞

d1(Ωm) ≥

∫
Ω

|∆u|2 dx∫
∂Ω

u2
ν dω

≥ d1(Ω)

where the last inequality follows by the variational characterization of d1(Ω), see
(2.2). This proves lower semicontinuity of Ω 7→ d1(Ω).

Proof of (5.4). For simplicity, we put vm := |∇ûm| and v0 := |∇û| so that (5.4)
follows if we show that

lim
m→∞

∫
∂Ωm

v2
m dω =

∫
∂Ω

v2
0 dω . (5.5)

We now need some tools from the theory of convex bodies. For the definitions
of a support function and of Gauss map we refer to [28]. To simplify subsequent
notations we put Ω0 = Ω. Then for any m = 0, 1, ... and any θ ∈ Sn−1 we define

ρm(θ) = sup{ρ > 0; ρθ ∈ Ωm} , rm(θ) = ρm(θ)θ ,

respectively the radial function and the radial map of Ω: rm(θ) is the unique
intersection of ∂Ω with the ray from the origin in the direction of θ. Also denote
by hm : Sn−1 → R+ and by νm : ∂Ωm → Sn−1, respectively the support function
and the Gauss map of Ωm. Finally, let

Φm(θ) :=
ρnm(θ)

hm(νm(rm(θ)))
(θ ∈ Sn−1).

It is clear that the functions Φm are uniformly bounded on Sn−1. Moreover, by
[15, Remark 1.6] (see also (17) in [7]) we know that

Φm(θ)→ Φ0(θ) a.e. in Sn−1 (5.6)
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where a.e. is intended with respect to the (n− 1)-Hausdorff measure. Inspired by
[7, (16)] we shall make use of the following change of variables∫

∂Ωm

f(ω) dω =

∫
Sn−1

f(rm(θ)) Φm(θ) dθ (5.7)

valid for any f ∈ L1(∂Ωm). We apply (5.7) to v2
m to get∫

∂Ωm

v2
m(ω) dω =

∫
Sn−1

v2
m(rm(θ)) Φm(θ) dθ. (5.8)

Note that (5.2) implies that the sequence {|∇um|} is bounded in H1(Ωm). In
turn, since the Ωm are convex, this implies that {|∇um|} is bounded in H1/2(∂Ωm).
By embedding Theorems (recall that ∂Ωm is (n− 1)-dimensional!) we know that

{|∇um|} is bounded in Lq(∂Ωm) for 1 ≤ q ≤ 2(n−1)
n−2 if n ≥ 3 and all 1 ≤ q <

∞ if n = 2. Therefore, the sequence {v2
m(rm(θ)) Φm(θ)} in (5.8) is bounded in

Lq/2(Sn−1) for some q/2 > 1. Since by (5.3) and (5.6) it also converges pointwise
a.e. to v2

0(r0(θ)) Φ0(θ) we may apply Vitali’s version of Lebesgue’s Theorem [32]
to obtain ∫

Sn−1

v2
m(rm(θ)) Φm(θ) dθ →

∫
Sn−1

v2
0(r0(θ)) Φ0(θ) dθ .

By (5.7) this implies (5.5) and, subsequently, (5.4). �

Remark 5.2. As a byproduct of this proof we see that ‖∆um‖L2(Ωm) → ‖∆u‖L2(Ω),
a kind of continuity of normalized eigenfunctions.

A second crucial tool needed for the proof of Theorem 4.6 is a lower bound for
d1. By comparison with the solution to the torsion problem, Payne [25, Formulae
(5.11)-(5.12)] was able to prove

Lemma 5.3. Let Ω ⊂ Rn be a convex bounded domain and let ρΩ denote the minimal
distance between parallel planes which define a strip containing Ω. Then

d1(Ω) ≥ 2

ρΩ
.

The result in [25] is obtained with some regularity assumptions on the bound-
ary. This restriction has been removed in [27], see also [18] for planar rectangles.

We are now ready to give the proof of Theorem 4.6. Consider a sequence {Ωm} ⊂
Rn of convex domains having the same measure as the unit ball B ⊂ Rn such that
d1(Ωm) → inf d1, where the infimum of d1(Ω) is taken among all convex sets of
measure |B|. By Lemma 5.3 we know that there exists R > 0 such that Ωm ⊂ BR
for all m, since otherwise d1(Ωm) → +∞. This fact, combined with Blaschke
selection Theorem [28, Theorem 1.8.6], guarantees that, up to a subsequence, {Ωm}
converges to a convex domain Ω of measure |B|. Hence, by Theorem 5.1, the
infimum is achieved by this limit domain.
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