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Abstract

Given a weakly convergent sequence of positive functions in W 1,p
0 (Ω), we prove the

equivalence between its convergence in the sense of obstacles and the lower semicon-
tinuity of the term by term duality product associated to (the p-Laplacian of) weakly
convergent sequences of p-superharmonic functions of W 1,p

0 (Ω). This result implicitly
gives new characterizations for both the convergence in the sense of obstacles of a
weakly convergent sequence of positive functions and for the weak l.s.c of the duality
product.
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1 Introduction

The limit of the scalar product of two weakly convergence sequences in a Hilbert space is, a
priori, uncontrollable. In some particular situations, as for example in Sobolev spaces, when
the sequences of functions are solutions (or supersolutions) of partial differential equations,
extra information can be obtained on the scalar product of the limits by using qualitative
properties of the solutions of the PDEs. In this paper, we are interested in duality products
in the Sobolev spaces W−1,q ×W 1,p

0 involving p-superharmonic and positive functions. We
characterize all sequences of positive functions, such that the duality product with the p-
Laplacian of p-superharmonic functions is lower semincontinuous.

More precisely, let (un), (vn) ⊆ W 1,p
0 (Ω) be two sequences of non-negative functions and

assume they weakly converge to u and v, respectively. Assuming moreover that −∆pun ≥ 0
in the sense of distributions on Ω, we wonder whether

lim inf
n→∞

∫
Ω

|∇un|p−2∇un∇vndx ≥
∫

Ω

|∇u|p−2∇u∇vdx. (1)

Under no further assumption, this assertion is in general false. For an extensive study of
this question we refer the reader to [3] (see also [4] for further results), where the authors
give sufficient conditions on the sequence (vn) in order that (1) holds true. Precisely, the
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main hypothesis is that the functions vn are also p-superharmonic −∆pvn ≥ 0. An example
showing that the positivity condition vn ≥ 0 is not (in general) sufficient for the lower semi-
continuity of (1) is also given for p = 2. The example relies on the emergence of the ”strange
term” appearing in the relaxation process of domains through γ-convergence (see [10]) and
gives an intuitive hint on the fact that, in order that (1) is true, (vn) should vary such that
their level sets do not produce relaxation measures via γ-convergence (see [5] for a detailed
introduction to γ-convergence and Section 2 for a short review).

The purpose of this paper is to give a characterization of all W 1,p
0 (Ω)-weakly convergent

sequences (vn) of nonnegative functions for which (1) holds true for every W 1,p
0 (Ω)-weakly

convergent sequence (un) such that −∆pun ≥ 0.
We prove that the necessary and sufficient condition that (vn) has to satisfy is to converge

in the sense of obstacles (see Section 2 for the precise definition and [1, 12] for details).
This convergence is, in a certain sense, weaker than the strong convergence of W 1,p

0 (Ω) and
stronger than the weak convergence of W 1,p

0 (Ω). Since (vn) is assumed by hypothesis weakly
convergent in W 1,p

0 (Ω), proving that it also converges in the sense of obstacles is equivalent
to the possibility of finding a sequence θn strongly convergent to v in W 1,p

0 (Ω), such that
θn ≤ vn a.e. This is a consequence of the characterization of the obstacle convergence via
the Mosco convergence of the convex sets

Kvn = {u ∈ W 1,p
0 (Ω) : u ≤ vn a.e.}.

In order to describe the obstacles, we make use on fine quasi-continuity properties of
Sobolev functions. The proof of the main result of the paper relies on the characterization

of the obstacle convergence vn
obst−→ v in terms of the γ-convergence of the level sets {vn >

t} γ−→ {v > t}, and on the knowledge of the relaxed measures associated to a γ-convergent
sequence of quasi-open sets.

Of course, the diffcult part is the necessity. In [3], the hypothesis on the p-superharmonicity
of vn insures the fact that min{vn, v} converges strongly to v in W 1,p

0 (Ω)! So, taking
θn = min{vn, v} we recover the obstacle convergence and fall into the sufficient part of
the characterization result.

All results in this paper hold for A-superharmonic functions, where −div A is a non-linear
operator of p-Laplacian type. Precisely, assuming A : W 1,p

0 (Ω) 7→ W−1,q(Ω) is similar to the
p-Laplacian (see the exact definition in Section 2) one can prove that if (vn) ⊆ W 1,p

0 (Ω) is
a weakly convergent sequence of non-negative functions, then vn converges in the sense of
obstacles to the same limit v if and only if for every sequence of functions (un) ⊆ W 1,p

0 (Ω),
such that −div (a(x,∇un)) ≥ 0 and un ⇀ u weakly in W 1,p

0 (Ω) we have

lim inf
n→∞

∫
Ω

a(x,∇un)∇vndx ≥
∫

Ω

a(x,∇u)∇vdx. (2)

For the simplicity of the exposition, our results are presented for the p-Laplace operator. We
point out the fact that the convergence of (vn) into the sense of obstacles is independent on
the choice of the operator −div (a(x, ·)).

Section 2 contains a review of the main tools used in the paper, Section 3 contains the
proof of the characterization result and the last section is devoted to some examples. A
particular attention is given to uniformly oscillating obstacles.
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2 Obstacles, capacity and γ-convergence

Capacity and relaxation measures. Let Ω ⊆ RN be a bounded open set and let 1 < p <
+∞. The p-capacity of a subset E in Ω is

capp(E,Ω) = inf
{∫

Ω

|∇u|p dx : u ∈ UE

}
,

where UE is the set of all functions u of the Sobolev space W 1,p
0 (Ω) such that u ≥ 1 almost

everywhere in a neighborhood of E.
If a property P (x) holds for all x ∈ E except for the elements of a set Z ⊆ E with

capp(Z) = 0, we say that P (x) holds p-quasi-everywhere on E and write p-q.e. The expres-
sion almost everywhere refers, as usual, to the Lebesgue measure.

A subset A of Ω is said to be p-quasi-open if for every ε > 0 there exists an open subset Aε

of Ω, such that A ⊆ Aε and capp(Aε \A,Ω) < ε. A function f : Ω → R is said to be p-quasi-
continuous (resp. quasi-lower semi-continuous) if for every ε > 0 there exists a continuous
(resp. lower semi-continuous) function fε : Ω → R such that capp({f 6= fε},Ω) < ε, where
{f 6= fε} = {x ∈ Ω : f(x) 6= fε(x)}. It is well known (see, e.g., [17, 19]) that every function
u of the Sobolev space W 1,p

0 (Ω) has a p-quasi-continuous representative, which is uniquely
defined up to a set of p-capacity zero. We shall always identify the function u with its
quasi-continuous representative, so that a point-wise condition can be imposed on u(x) for
p-quasi-every x ∈ Ω.

Since p is fixed throughout the paper, the index p may be dropped when speaking about
p-quasi-open sets, p-quasi-continuity, etc.

We denote by Mp
0(Ω) the set of all nonnegative Borel measures µ on Ω, such that

i) µ(B) = 0 for every Borel set B ⊆ Ω with capp(B,Ω) = 0

ii) µ(B) = inf{µ(U) : U p− quasi-open, B ⊆ U} for every Borel set B ⊆ Ω.

We stress the fact that the measures µ ∈Mp
0(Ω) do not need to be finite, and may take the

value +∞.
There is a natural way to identify a quasi-open set to a measure. More generally, given

an arbitrary Borel subset E ⊆ Ω, we denote by ∞|E the measure defined by

i) ∞|E(B) = 0 for every Borel set B ⊆ Ω with capp(B ∩ E,Ω) = 0,

ii) ∞|E(B) = +∞ for every Borel set B ⊆ Ω with capp(B ∩ E,Ω) > 0.

Definition 2.1 We say that a sequence (µn) of measures in Mp
0(Ω) γp-converges to a mea-

sure µ ∈Mp
0 (Ω) if and only if Fµn : W 1,p

0 (Ω) → R,

Fµn(u) =

∫
Ω

|∇u|pdx+

∫
Ω

|u|pdµn

Γ-converges in Lp(Ω) to Fµ, where

Fµ(u) =

∫
Ω

|∇u|pdx+

∫
Ω

|u|pdµ.
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In order to simplify notations and since p is fixed, we drop the index p and instead of γp we
note γ.

We recall that Fn : W 1,p
0 (Ω) → R Γ-converges to F in Lp(Ω) if for every u ∈ Lp(Ω) there

exists a sequence un ∈ Lp(Ω) such that un → u in Lp(Ω) and

Fµ(u) ≥ lim sup
n→∞

Fµn(un),

and for every convergent sequence un → u in Lp(Ω)

Fµ(u) ≤ lim inf
n→∞

Fµn(un).

In Definition 2.1, by the identification of a quasi-open set A with the measure ∞Ω\A,
we implicitly have the definition of the γ-convergence of a sequence of quasi-open sets. In
general, the γ-limit of a sequence of quasi-open sets is a measure of Mp

0(Ω). In particular,
this measure can be itself of the form ∞Ω\A.

Note that the γ-convergence is metrizable by the following distance

dp(µ1, µ2) =

∫
Ω

|wµ1 − wµ2|dx,

where wµ is the variational solution of

−∆pwµ + µ|wµ|p−2wµ = 1 (3)

in W 1,p
0 (Ω) ∩ Lp(Ω, µ) (see [5, 15]). The precise sense of the equation is the following:

wµ ∈ W 1,p
0 (Ω) ∩ Lp(Ω, µ) and for every φ ∈ W 1,p

0 (Ω) ∩ Lp(Ω, µ)∫
Ω

|∇wµ|p−2∇wµ∇φdx+

∫
Ω

|wµ|p−2wµφdµ =

∫
Ω

φdx.

In view of the result of Hedberg [16], if A is an open subset of Ω, the solution of this equation
associated to the measure ∞Ω\A is nothing else but the solution in the sense of distributions
of

−∆pw = 1 in A, w ∈ W 1,p
0 (A).

Throughout the paper, by wµ we denote the solution of (3) associated to the measure µ, and
by wA the solution of the same equation associated to the measure ∞Ω\A.

We refer to [14] for the following result.

Proposition 2.2 The space Mp
0(Ω), endowed with the distance dp, is a compact metric

space. Moreover, the class of measures of the form ∞Ω\A, with A open (and smooth) subset
of Ω, is dense in Mp

0(Ω).

Given a measure µ ∈ Mp
0(Ω), we call the regular set of the measure µ the quasi-open set

{wµ > 0}. We also notice that this set, which is denoted Aµ, coincides up to a set of zero
capacity with the union of all finely open sets of finite µ measure.

Lemma 2.3 Assume (An), (Bn) are two sequences of quasi-open sets which γ-converge to
µA, µB, respectively. If capp(An ∩Bn) = 0 for every n ∈ N, then cap(AµA

∩ AµB
) = 0.
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Proof We notice that wAn · wBn = 0 q.e. Passing to the limit a.e. and using the quasi-
continuity of wµA

and wµB
, we get wµA

· wµB
= 0 q.e., hence the conclusion. 2

On Mp
0(Ω), the following monotonicity is considered on the family of measures:

µ1 ≤ µ2 if ∀A ⊆ Ω, A quasi open µ1(A) ≤ µ2(A).

We notice (see [5], [13]) that every monotone (increasing or decreasing) sequence of measures
is γ-convergent.

The obstacle problem. Although the obstacle problem can be defined properly in the
frame of measurable or quasi lower semicontinuous functions, in the most part of the paper
we restrict ourselves to obstacles which are elements of W 1,p

0 (Ω). Roughly speaking, for
q = p/(p − 1), given a function f ∈ W−1,q(Ω) and a measurable function v, the solution
of the obstacle problem associated to v and f is the unique solution of the minimization
problem

min{1

p

∫
Ω

|∇φ|p− < f, φ >W−1,q(Ω)×W 1,p
0 (Ω): φ ∈ Kv},

where
Kv = {φ ∈ W 1,p

0 (Ω) : φ ≤ v a.e. Ω}.

If the obstacle v is an element of W 1,p
0 (Ω), the inequality φ ≤ v in the previous set can be

equivalently taken in the sense a.e. or p-q.e. (for quasi-continuous representatives). In the
sequel we concentrate our attention only on obstacles belonging to W 1,p

0 (Ω).

Definition 2.4 Let vn, v ∈ W 1,p
0 (Ω). We say that vn converges in the sense of obstacles to

v if

W 1,p
0 (Ω) 3 u 7→

∫
Ω

|∇u|pdx+∞{vn}(u) (4)

Γ-converges in Lp(Ω) to

W 1,p
0 (Ω) 3 u 7→

∫
Ω

|∇u|pdx+∞{v}(u) (5)

where ∞{v}(u) = 0 if u ≤ v p-q.e. and +∞ if not. We write vn
obst−→ v.

The main consequence of the convergence of obstacles vn
obst−→ v is that for every f ∈

W−1,q(Ω) the sequence of solutions un of the obstacle problem associated to vn and f con-
verges strongly in W 1,p

0 (Ω) to the solution associated to v.
The convergence in the sense of obstacles is equivalent to the convergence in the sense of

Mosco of Kvn to Kv (see [1]), i.e. to the following two relations:

1. ∀u ∈ Kv, ∃un ∈ Kvn such that un → u strongly in W 1,p
0 (Ω);

2. If unk
∈ Kvnk

and unk
⇀ u weakly in W 1,p

0 (Ω), then u ∈ Kv.
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Notice that if vn converges weakly in W 1,p
0 (Ω) to v, then the second Mosco condition is

satisfied.
We recall from [6, Corollary 4.9] and [12] the following characterization of the obstacle

convergence.

Theorem 2.5 Let vn, v ∈ W 1,p
0 (Ω), vn ≥ 0. Then vn converges in the sense of obstacles to

v if and only if there exists a dense set T ⊆ R such that

{vn > t} γ→ {v > t} ∀t ∈ T.

Operators similar to the p-Laplacian. Assume that a : Ω×RN → RN is a Charatheodory
function which is homogeneous of degree p− 1 in the second variable

a(x, tζ) = |t|p−2ta(x, ζ), t ∈ R, t 6= 0. (6)

We notice that in order to have a precise description of the γ-limits of sequences of quasi-open
sets, the homogeneity property is crucial (see [9] and [15]).

We suppose as usual the monotonicity assumptions on a(x, ζ) (see for instance [15]):
there exist two constants c0, c1 with 0 < c0 ≤ c1 <∞ such that, for a.e. x ∈ Ω and for every
ζ1, ζ2 ∈ RN we have in the case 2 ≤ p < +∞

(a(x, ζ1)− a(x, ζ2), ζ1 − ζ2) ≥ c0|ζ1 − ζ2|p (7)

|a(x, ζ1)− a(x, ζ2)| ≤ c1(|ζ1|+ |ζ2|)p−2|ζ1 − ζ2|, (8)

and in the case 1 < p ≤ 2

(a(x, ζ1)− a(x, ζ2), ζ1 − ζ2) ≥ c0(|ζ1|+ |ζ2|)p−2|ζ1 − ζ2|2 (9)

|a(x, ζ1)− a(x, ζ2)| ≤ c1|ζ1 − ζ2|p−1. (10)

By the assumptions made on a(x, ζ) the operator Au = −div
(
a(x,∇u)

)
turns out to

be continuous and strongly monotone from W 1,p
0 (Ω) into its dual W−1,q(Ω) via the pairing:

< Au, v >=

∫
Ω

a(x,∇u) · ∇vdx ∀u, v ∈ W 1,p
0 (Ω). (11)

If a(x, ζ) = |ζ|p−2ζ, then A is the p-Laplace operator

−∆pu = −div (|∇u|p−2∇u).

3 Characterization of the lower-semicontinuty

The main result of the paper is the following.

Theorem 3.1 Let (vn) ⊆ W 1,p
0 (Ω), vn ≥ 0, vn ⇀ v weakly in W 1,p

0 (Ω). The following
assertions are equivalent:
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i) vn converges in the sense of obstacles to v;

ii) for every sequence (un) ⊆ W 1,p
0 (Ω), such that −∆pun ≥ 0 and un ⇀ u weakly in

W 1,p
0 (Ω) we have

lim inf
n→∞

∫
Ω

|∇un|p−2∇un∇vndx ≥
∫

Ω

|∇u|p−2∇u∇vdx. (12)

Proof Necessity: i) =⇒ ii). Assume i) holds true. Consequently Kvn converges in the
sense of Mosco to Kv. In particular, the first condition of the Mosco convergence, insures
the existence of a sequence θn ∈ W 1,p

0 (Ω) such that θn ≤ vn and θn −→ v in W 1,p
0 (Ω)-strong.

Thus, we have

lim inf
n→∞

∫
Ω

|∇un|p−2∇un∇vndx = lim inf
n→∞

< −∆pun, vn >W−1,q(Ω)×W 1,p
0 (Ω)

≥ lim inf
n→∞

< −∆pun, θn >W−1,q(Ω)×W 1,p
0 (Ω)

= lim inf
n→∞

∫
Ω

|∇un|p−2∇un∇θndx =

∫
Ω

|∇u|p−2∇u∇vdx.

For the last equality, we notice, on the one hand, that |∇un|p−2∇un converges weakly to
|∇u|p−2∇u in Lq(Ω,RN) since −∆pun are positive and uniformly bounded Radon measures.
This result is due to Boccardo and Murat [2] (see also [15, Theorem 2.10]) and is related to
the pointwise convergence of the gradients. On the second hand, we have that θn converges
strongly in W 1,p

0 (Ω).

Sufficiency: ii) =⇒ i). Assume ii) holds. We shall prove that vn converges in the sense
of obstacles to v. We rely both on the characterization of the obstacle convergence via the
Mosco convergence, and since vn ≥ 0, on the characterization through the γ-convergence of
the level-sets {vn > t}. (Theorem 2.5 in Section 2).

We notice that from the weak convergence in W 1,p
0 (Ω), vn ⇀ v, the second Mosco condi-

tion of the desired Mosco convergence Kvn

M−→ Kv is automatically satisfied. Moreover, the
first Mosco condition has to be proved only for the function v. Indeed, if there exists θn ≤ vn

such that θn −→ v in W 1,p
0 (Ω)-strong, then for every ψ ≤ v, the first Mosco condition holds

with the sequence min{θn, ψ} ≤ vn.
Assume for contradiction that ∃δ > 0 and a subsequence (vnk

) such that

lim inf
k→∞

min
u∈Kvnk

‖u− v‖W 1,p
0 (Ω) ≥ δ > 0. (13)

In order to achieve the contradiction in assumption (13), we construct a subsequence of
(vnk

), which converges in the sense of obstacles to v.

Step 1. We construct a mapping

[0,+∞) 7→ µt ∈Mp
0(Ω),
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which is increasing in the sense of measures of Mp
0(Ω) and such that for a subsequence of

(vnk
) (denoted with the index r) and for a dense set T ⊆ [0,+∞) we have

∀t ∈ T {vr > t} γ−→ µt.

The construction of the mapping t 7→ µt is done by a diagonal procedure using the com-
pactness and the metrizability of the γ-convergence in Mp

0(Ω). We follow the approach used
in [7] for constructing the relaxed space for obstacles. Let T = Q ∩ R+ = {t1, t2, .., tk, ..}.
For r = 1, ..., we successively extract γ-convergent subsequences for the sequences of the
quasi-open sets {vnk

> tr}, and define µtr being the γ-limit. By a diagonal procedure, the
metrizability of the γ-convergence gives the existence of a subsequence of (vn) and of a family
of measures (µtr) such that the level sets {vnk

> tr} γ-converges to µtr .
Using the density of the set T in [0,+∞) and relying both on the monotonicity of the

measures and the γ convergence of monotone sequences, we define the mapping t 7→ µt

by γ-continuity on the right. Finally, it can be concluded as in [6] that the convergence

{vr > t} γ−→ µt holds on R \ N , where N is at most countable. Precisely, N is the set of
discontinuity points of the monotonous real function [0,+∞) 3 t→

∫
Ω
wµt ∈ R.

By abuse of notation and for the simplicity of the exposition, we renote the constructed
subsequence by (vn).

We use the hypothesis ii) and choose in relation (12) the sequence (un) defined in the
following way: {

−∆pun = 0 in {vn > t}
un = wΩ in Ω \ {vn > t} (14)

Following [17], we have −∆pun ≥ 0 in Ω, so the sequence (un) is admissible in ii). This
sequence is bounded in W 1,p

0 (Ω), hence for a subsequence, still denoted using the same index,
we have that un ⇀ u weakly in W 1,p

0 (Ω). Following [2], we also have that ∇un → ∇u a.e.
in Ω, since −∆pun are uniformly bounded positive Radon measures.

The information on the γ-convergence of the level sets {vn > t} gives

• u = wΩ on Ω \ Aµ. This is a consequence of the fact that u− wΩ ∈ Lp(Ω, µ).

• On Aµ, u satisfies the equation

−∆pu+ µ|u− wΩ|p−2(u− wΩ) = 0 (15)

in the variational sense of W 1,p
0 (Ω)∩Lp(Ω, µ), i.e. for every φ ∈ W 1,p

0 (Ω)∩Lp(Ω, µ) we
have ∫

Ω

|∇u|p−2∇u∇φdx+

∫
Ω

|u− wΩ|p−2(u− wΩ)φdµ = 0. (16)

Indeed, for proving that u satisfies equation (15) on Aµ with the measure µ issued from
the γ-convergence of the level sets {vn > t}, we can use a similar argument as in [9]. Denoting
θn = un − wΩ and θ = u− wΩ, it is enough the prove that

gn =: ∆p(θn + wΩ)−∆pθn
H→ g =: ∆p(θ + wΩ)−∆pθ,
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the convergenceH being understood in the following sense: for every sequence φn ∈ W 1,p
0 ({vn >

t} which converges weakly in W 1,p
0 (Ω) to φ we have

< gn, φn >W−1,q(Ω)×W 1,p
0 (Ω)→< g, φ >W−1,q(Ω)×W 1,p

0 (Ω) .

Since we know that ∇un converges a.e. to ∇u, for every δ > 0, there exists a set E such
that |E| < δ and

∇un → ∇u
uniformly on Ω \ E. The same holds for ∇θn and ∇θ. Consequently

lim
n→∞

∣∣∣ ∫
Ω

(|∇un|p−2∇un − |∇θn|p−2∇θn)∇φndx−
∫

Ω

(|∇u|p−2∇u− |∇θ|p−2∇θ)∇φdx
∣∣∣

≤ lim sup
n→∞

∫
E

|(|∇un|p−2∇un − |∇θn|p−2∇θn)∇φn|dx+

∫
E

|(|∇u|p−2∇u− |∇θ|p−2∇θ)∇φ|dx.

For every ε > 0, there exists M such that

|∇ρ| ≥M =⇒
∣∣∣|∇(ρ+ wΩ)|p−2∇(ρ+ wΩ)− |∇ρ|p−2∇ρ

∣∣∣ ≤ ε|∇ρ|p−1.

Thus, for a given ε > 0 we have∫
E

|(|∇un|p−2∇un − |∇θn|p−2∇θn)∇φn|dx

≤ ε

∫
E∩{|∇θn|≥M}

|∇θn|p−1|∇φn|dx+ 3Mp−1

∫
E∩{|∇θn|<M}

|∇φn|dx

≤ C(ε+ 3Mp−1|E ∩ {|∇θn| < M}|
1
q ).

Taking the limit n→∞, making successively δ → 0 and ε→ 0, we conclude that gn
H→ g.

In order to prove that u satisfies equation (15) on Aµ, we use the fact that

−∆pθn = gn in {vn > t},

θn ∈ W 1,p
0 ({vn > t}),

that {vn > t} γ-converges to µ and gn
H−→ g.

Applying inequality (12) to the sequence (un) constructed above, we get

lim inf
n→∞

∫
Ω

|∇un|p−2∇un∇vndx ≥
∫

Ω

|∇u|p−2∇u∇vdx,

or, decomposing the integrals by using vn − t = (vn − t)+ − (vn − t)−,

lim inf
n→∞

∫
Ω

|∇un|p−2∇un∇(vn − t)+dx−
∫

Ω

|∇un|p−2∇un∇(vn − t)−dx ≥∫
Ω

|∇u|p−2∇u∇(v − t)+dx−
∫

Ω

|∇u|p−2∇u∇(v − t)−dx.
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We have that un = wΩ on {vn > t}, hence we get∫
Ω

|∇un|p−2∇un∇(vn − t)−dx→
∫

Ω

|∇u|p−2∇u∇(v − t)−dx.

Consequently

lim inf
n→∞

∫
Ω

|∇un|p−2∇un∇(vn − t)+dx ≥
∫

Ω

|∇u|p−2∇u∇(v − t)+dx.

But, un is p-harmonic on {vn > t}, hence the integrals on the left hand side are equal to
zero! On the right hand side, we use the equation (16) satisfied by u on Aµ and get

0 ≥
∫

Ω

|u− wΩ|p−2(wΩ − u)(v − t)+dµ. (17)

Since all terms under the sum are positive on the right hand side, we get∫
Ω

|u− wΩ|p−2(wΩ − u)(v − t)+dµ = 0.

By the comparison principle of p-superharmonic functions we know wΩ(x) > u(x) p-q.e. on
Aµ. Consequently we get that µ({v > t}) = 0.

The main idea is to prove that µ(Aµ) = 0 in which case µ = ∞Ω\Aµ and thus Aµ = {v >
t}. As a consequence we would get that the sequence of level sets {vn > t} γ-converges to
{v > t} and Theorem 2.5 could be applied. It may be possible that {v > t} is a strict subset
of Aµ (in the sense of capacity), so this argument is not enough to conclude that µ = 0 on
Aµ, and needs further investigation.

Step 2. From the weak-W 1,p
0 (Ω) convergence vn ⇀ v, we get

(vn − t)+ ⇀ (v − t)+

weakly in W 1,p
0 (Ω), and from the γ-convergence of the sets {vn > t} to µ we get (v − t)+ ∈

W 1,p
0 (Ω) ∩ Lp(Ω, µ). The same holds also for (v − (t+ ε))+ for ε > 0. Let us denote

At = γ − lim
ε→0

{v > t+ ε}.

This γ-limit exists from the monotonicity of the sets. Obviously we get At ⊆ Aµ.
On the other hand, following Lemma 2.3, Aµ ∩ {v < t} = ∅ in the sense of capacity,

hence Aµ ⊆ {v ≥ t}. If t is a γ-continuity point for the mapping t 7→ {v > t} we get that
Aµ = {v > t} up to a set of zero capacity.

Step 3. We conclude the proof by noticing that the mapping t 7→ {v > t} is γ-continuous on
R with the exception of an at most countable family of points, hence we get that µt = ∞{v≤t}
on R with the exception of an at most countable family of points, so the limit in the sense
of obstacles of the sequence (vn) is the function v.

2
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Remark 3.2 In [3] the authors prove that if un, vn are weakly convergent sequences of non
negative functions of W 1,p

0 (Ω) such that −∆pun ≥ 0 and −∆pvn ≥ 0, then relation (1) holds
true. The main technical argument is that min{vn, v} converges strongly in W 1,p

0 (Ω) to v,
which is obtained as a consequence of the p-superharmonicity of vn. We notice that the
strong convergence min{vn, v} → v together with the weak convergence vn ⇀ v in W 1,p

0 (Ω)

imply that vn
obst−→ v, hence assertion i) of Theorem 3.1 is satisfied.

4 Futher remarks

The extension of the results of the paper to higher order operators is not an obvious matter.
On the one hand, the positivity preserving property for higher order operators is depending
on the geometric set where the operator is defined. For the bi-Laplace operator, positivity
preserving holds, for example, on balls and the entire space but fails in general, even on
smooth sets (see [11]). If the operators are positivity preserving, the sufficiency part of
Theorem 3.1 still holds true. Nevertheless, dealing with the necessity part is more difficult,
since the convergence of obstacles and the relaxation of sets through γ-convergence is not
known. Moreover, the lack of reticularity of the Sobolev spaces of order greater than 1 may
be a supplementary difficulty for the necessity part.

Remark 4.1 There is a significant non-symmetry between the two terms in the duality
product. The convergence in the sense of the obstacles of vn is related to the Mosco con-
vergence of the sets Kvn and is independent on the choice of the operator itself which is
associated to the terms un. This means that if Theorem 3.1 holds for a sequence (vn)n and
the p-Laplace operator, then Theorem 3.1 holds for the same sequence (vn)n and an operator
similar to the p-Laplacian.

In the sufficient condition given in [3], the superharmonicity of the first sequence un serves
for monotonicity of the duality product of −∆pun against vn and the metric projection of
v on the cone {ϕ ≤ vn}, respectively, and on the other hand, the p-superharmonicity of
the second sequence vn is a sufficient condition to obtain the obstacle convergence as a
consequence of the weak convergence.

Remark 4.2 (Uniformly oscillating obstacles) Assume that N ≥ p > N − 1 and vn ∈
W 1,p

0 (Ω), vn ≥ 0 are continuous and have uniform oscillations, i.e. there exists a sequence of
numbers (ln)n and a dense set {t1, t2, ...} ⊆ R+ such that

∀r, n ∈ N, ]{vn ≤ tr} ≤ lr, (18)

where ]A denotes the number of the connected components of the set A. If vn ⇀ v weakly in
W 1,p

0 (Ω), then vn converges in the sense of obstacles to v. Indeed, the second Mosco condition
is satisfied as a consequence of the weak convergence vn ⇀ v. In order to prove the first Mosco
condition, we follow the idea of the proof of Theorem 3.1, and assume for contradiction that
relation (13) holds for some δ > 0. From (18) and the shape compactness/stability result
of [8], there exists a subsequence of the sets {vn > tr} and a set Ωtr , such that {vnk

> tr}
γ-converges to Ωtr . Consequently, by a diagonal extraction procedure as in Theorem 3.1, we
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construct an obstacle h such that {h > tr} = Ωtr and the sequence vnk
converges in the sense

of obstacles to h. From the γ-convergence of the level sets, we get (v − tr)
+ ∈ W 1,p

0 (Ωtr),
hence h ≥ v. This contradicts (13), from the Mosco convergence.

It is needless to say that vn are not, in general, p-superharmonic.

Remark 4.3 In [3], the authors give an example of a sequence of positive functions vn

which are not superharmonic such that inequality (1) fails to be true for a suitable sequence
un of superharmonic functions. This construction is done around the pioneering result of
Cioranescu and Murat [10] on the ”strange term” appearing in the relaxation process through
the γ-convergence. The presence of the strange term is an argument of non γ-convergence
of obstacles! So, from this point of view it is not surprising that inequality (1) is violated,
although the choice of un has to be done carefully.

Remark 4.4 We give in the sequel an example of non superharmonic functions vn for which
the second assertion of Theorem 3.1 holds. Let η ∈ C1(R2,R) be a periodic function of period
(l1, l2) and ϕ ∈ C∞0 (Ω). We consider the sequence of functions

vn = wΩ + ϕεη(
x

ε
).

It is clear that this sequence converges weakly but not strongly in H1
0 (Ω) to v = wΩ, provided

that ϕ or η are not the zero functions and ε ↓ 0. Inequality (1) is satisfied for all admissible
sequences (un). This is a consequence of the obstacle convergence of vn towards v which can
be easily proved. Nevertheless for small ε, the functions vn are not superharmonic!
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