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Abstract

This survey paper is focused on the Saint-Venant inequality for the Laplace operator with
Robin boundary conditions. In a larger context, we make the point on the recent advances con-
cerning isoperimetric inequalities of Faber-Krahn type for elastically supported membranes and
describe the main ideas of their proofs in both contexts of rearrangement and free discontinuity
techniques.
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1 Introduction

The isoperimetric property of the ball concerning the first eigenvalue of the Dirichlet-Laplacian,
conjectured for plane domains by Lord Rayleigh in 1877, and proved independently by Faber
and Krahn in the 1920’s, states that if Ω ⊆ RN is open and bounded, then

λ1(Ω∗) ≤ λ1(Ω), (1)

where Ω∗ is a ball such that |Ω∗| = |Ω|. Here λ1(Ω) is defined as the lowest value for which the
problem {

−∆u = λ1(Ω)u in Ω

u = 0 on ∂Ω

admits a non trivial solution. Following the review paper [21] (see also [3]), Lord Rayleigh was
motivated in his conjecture by the study of the principal frequency of vibration of a plane elastic
membrane fixed at its boundary, stating that the circular shape has the lowest mode of vibration
(and giving some evidence of it).

Inequality (1) is usually referred to as the Faber-Krahn inequality for the first eigenvalue of the
Dirichlet-Laplacian. When Ω has irregular boundary, the eigenvalue problem should be interpreted
in the weak sense of Sobolev functions W 1,2

0 (Ω) vanishing at the boundary.

∗This paper surveys the talk given by the first author to the Seminario Mathematic Fisico, Milano in November
2014 and reports on to the joint work of the authors concerning shape optimization problems with Robin conditions
on the free boundary.
†The first author was supported by the ANR Optiform research programme, ANR-12-BS01-0007.
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The modern approach to the proof of the Faber-Krahn inequality is due to Pólya and Szegö
and it is described in their book [22]. It relies on the spherically symmetric decreasing rearrangement
technique applied to the expression of λ1(Ω) as the Rayleigh quotient

λ1(Ω) = min
u∈W 1,2

0 (Ω),u 6=0

∫
Ω |∇u|

2 dx∫
Ω u

2 dx
.

Considering the first eigenfunction u ∈W 1,2
0 (Ω), one obtains a radial symmetric decreasing function

u∗ ∈W 1,2
0 (B) equimeasurable with u (so that Lp-norms are preserved) such that∫

Ω∗
|∇u∗|2 dx ≤

∫
Ω
|∇u|2 dx,

so that inequality (1) readily follows since λ1(Ω∗) is lower than the Rayleigh quotient of u∗. The
properties of the spherically symmetric decreasing rearrangement show moreover that equality holds
in (1) if and only if Ω is equivalent to a ball up to negligible sets.

Such an approach provides easily the validity of a whole family of Faber-Krahn inequalities:
setting for 1 ≤ q < 2N

N−2

λ1,q(Ω) := min
u∈W 1,2

0 (Ω),u 6=0

∫
Ω |∇u|

2 dx(∫
Ω |u|q dx

) 2
q

, (2)

then again
λ1,q(Ω

∗) ≤ λ1,q(Ω) (3)

and equality holds if and only if Ω is a ball up to negligible sets.
For plane (simply connected) domains, the case q = 1 is relevant in the elasticity theory of

beams, and goes under the name of torsion rigidity problem (see e.g. [23, Section 35]): the inverse
of λ1,1(Ω) is proportional to the torsional rigidity of a beam with cross section Ω (here u has the
meaning of a stress function, its derivatives being connected with the elastic forces inside the beam).
That the shape of the cross section which provides the greatest torsional rigidity (under an area
constraint) should be a circle was conjectured by Saint-Venant1 in 1856.

In any dimension of the space, if q = 1, a suitably chosen minimizer uΩ of (2) solves the torsion
problem for the Dirichlet-Laplacian {

−∆uΩ = 1 in Ω,

uΩ = 0 on ∂Ω.

The torsional rigidity of Ω is then P (Ω) =
∫

Ω uΩdx and equals 1
λ1,1(Ω) . It is important to notice,

that the function uΩ is also the unique minimizer of the torsional energy

E(Ω) = min
v∈W 1,2

0 (Ω)

1

2

∫
Ω
|∇v|2dx−

∫
Ω
vdx,

and that P (Ω) = −2E(Ω).
The Sant-Venant inequality reads

P (Ω) ≤ P (Ω∗),

1Adhémar Jean Claude Barré de Saint-Venant
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while equality holds if and only if Ω is a ball, up to a set of zero capacity. Equivalently, the
Saint-Venant inequality can be written

E(Ω∗) ≤ E(Ω).

Along with the spherical rearrangement proof of (3) which works for every value of q ∈ [1, 2N
N−2),

it is interesting to recall a second proof argument, which is due Talenti [24] and is suitable for
the case q = 1. He proved the following pointwise inequality

u∗Ω(x) ≤ uΩ∗(x), a.e. x ∈ Ω∗.

Consequently, the Saint-Venant inequality holds by integration, since∫
Ω
uΩdx =

∫
Ω∗
u∗Ωdx ≤

∫
Ω∗
uΩ∗dx.

Robin boundary conditions. This paper is focused on the Saint-Venant inequality for the
Laplace operator with Robin boundary conditions, in the context of more general Faber-Krahn
inequalities.

Let β > 0 and Ω ⊆ RN be an open, bounded, Lipschitz set. We consider the torsion problem
for an elastically supported membrane{

−∆uΩ = 1 in Ω,
∂uΩ
∂n + βuΩ = 0 on ∂Ω

which has as unique solution uΩ, the minimizer of

Eβ(Ω) := min
u∈W 1,2(Ω)

1

2

∫
Ω
|∇u|2dx+

β

2

∫
∂Ω
u2dx−

∫
Ω
udx. (4)

We denote Pβ(Ω) =
∫

Ω uΩdx = −2Eβ(Ω). The main result is the following Saint-Venant inequality.

Theorem 1.1 For every β > 0, for every bounded Lipschitz set Ω ⊆ RN , the following inequality
holds

Pβ(Ω) ≤ Pβ(Ω∗),

with equality if and only if Ω is the ball.

In terms of torsion energies, this inequality is written: Eβ(Ω∗) ≤ Eβ(Ω), or equivalently

∀u ∈W 1,2(Ω) : Eβ(Ω∗) ≤ 1

2

∫
Ω
|∇u|2dx+

β

2

∫
∂Ω
u2dHN−1 −

∫
Ω
udx.

There are several important points to be noticed. The inequality above can not be proved by
a spherical rearrangement argument as for Dirichlet boundary conditions. This is due to the fact
that uΩ is, in general, not constant on ∂Ω. Consequently, the spherical rearrangement does not
control the gradient part of the energy. As well, an argument similar to the one of Talenti has not
been proved to hold in this case (but nor its failure, see the last section of the paper).

The only rearrangement proof known to work for Robin boundary conditions is due to Bossel
[6] and Daners [16] and works only in the case of the Faber-Krahn inequality for the first Robin
eigenvalue of the Laplacian (see Section 2 for details). It appears that the technique of Bossel-
Daners fails for the Saint-Venant inequality.
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In order to be well posed, the torsion problem for the Laplace operator with Robin boundary
conditions requires some regularity of the domain Ω. Indeed, even in the energetic formulation
given in (4) one needs, at a first sight, to be able to understand the trace of a test function on ∂Ω,
to have a Poincaré inequality in W 1,2(Ω) and the compact embedding of W 1,2(Ω) in L1(Ω). This is
the reason for which in Theorem 1.1 the hypothesis on the Lipschitz regularity of Ω is required. In
fact, this restriction (which a priori is reasonable), is not necessary at all. Understanding how to
remove this hypothesis is the key point of the proof of Theorem 1.1 by variational techniques, and
it will lead to a strengthening of the optimality of the ball. Indeed, the Saint-Venant inequality
holds in a much more general setting, for arbitrary domains. In Section 3 we detail this point.

For now, let us give an intuitive approach to arbitrary domains. Let Ω ⊆ RN be an arbitrary
open set of finite measure. Even if the trace of a Sobolev function u ∈ W 1,2(Ω) is not defined, if
one restricts to functions u ∈W 1,2(Ω) ∩ C0(Ω), the quantity

1

2

∫
Ω
|∇u|2dx+

β

2

∫
∂Ω
u2dHN−1 −

∫
Ω
udx

is well defined (at least equal to +∞). As a consequence, the question

∀u ∈W 1,2(Ω) ∩ C0(Ω) : Eβ(Ω∗) ≤ 1

2

∫
Ω
|∇u|2dx+

β

2

∫
∂Ω
u2dHN−1 −

∫
Ω
udx ?

is well posed. This approach amounts to the definition of the Robin problem in arbitrary domains
introduced by Daners [15] which is based on the Maz’ja space W 1,2(Ω, ∂Ω). In Section 3 we analyse
this issue and show how this setting is covered by our method.

2 The Robin-Laplacian: Faber-Krahn and Saint-Venant inequali-
ties

Let β > 0 be fixed and Ω ⊆ RN be an open, bounded, Lipschitz, connected set. For every q ∈ [1, 2]
we define

λβ1,q(Ω) = min
u∈W1,2(Ω)

u6=0

∫
Ω
|∇u|2dx+ β

∫
∂Ω
u2dHN−1

(∫
Ω
|u|q
) 2
q
dx

. (5)

For q = 1, we find the torsional rigidity defined in (4), with λβ1,1(Ω) = 1
Pβ(Ω) .

For q = 2 we get the first eigenvalue of the Robin-Laplacian, in which case the minimizer
u ∈W 1,2(Ω) solves in a weak sense the equation{

−∆u = λβ1,2(Ω)u in Ω,
∂u
∂n + βu = 0 on ∂Ω.

(6)

The function u is of constant sign, since Ω is connected.
Here is stated a general result proved in [10].

Theorem 2.1 (A family of Faber-Krahn inequalities) For every β > 0, for every q ∈ [1, 2],
for every bounded open Lipschitz set Ω ⊆ RN

λβ1,q(Ω) ≥ λβ1,q(Ω
∗),

with equality if and only if Ω is a ball.
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In particular, for q = 1 this is the Saint-Venant inequality which provides the result for Theorem
1.1.

For the case q = 2, Theorem 2.1 has been proved by Bossel in 1986 in two dimensions of the
space for simply connected smooth open sets [6]. The idea relies on a derangement procedure
and the study of a functional (called in the sequel H-functional) defined on the level sets of an
eigenfunction. This idea was completed and extended by Daners [16] in any dimension of the space
and to Lipschitz sets. Up to the knowledge of the authors, no suitable modification of this method
appears to be successful in the case when q 6= 2. On the contrary, if instead of the Laplace operator
one considers the p-Laplace operator, the H-functional can be easily adapted (see [7, 14]) but again
this requires the same p-norm for both numerator and denominator.

In [4], for q = 1, Bandle and Wagner proved that the ball is a local maximizer of the torsional
rigidity, for deformations by smooth vector fields. This proof is based on the fact that the first
order shape derivative of the torsional rigidity is vanishing for vector fields preserving the measure,
while the second order shape derivative is strictly negative at the ball.

The complete proof of Theorem 2.1 was given in [10] in a larger setting than just the Lipschitz
sets. The method is based on a free discontinuity approach to the isoperimetric inequality via
the principle ”existence and regularity =⇒ the optimum is the ball” (a free discontinuity approach
for the linear eigenvalue is already contained in [9], but the optimality of the ball was shown by
adapting the Bossel-Daners method).

The purpose of this survey article is to give the main ideas, from an intuitive perspective, of
the proof of Bossel-Daners for q = 2 and of the proof given in [10] for q = 1. In fact, the restriction
to q = 1 simplifies formally only the exposition of the proof of Theorem 2.1. Nevertheless, without
any significant difference the same arguments hold for every q ∈ [1, 2].

2.1 The proof of Theorem 2.1 for q = 2 by the method of Bossel-Daners.

Let Ω ⊆ RN be a bounded connected open set of class C2. Let u be a nonzero eigenfunction
associated to the first eigenvalue λβ1,2(Ω), which is smooth. We can assume that u ≥ 0 in Ω. In

fact, one can easily notice that u > 0 on Ω as a consequence of the Hopf principle. Indeed, since u
is superharmonic in Ω, at any point x0 ∈ ∂Ω where u attains its minimum one gets that the normal
derivative can not vanish: hence u(x0) > 0 so that infΩ u > 0. Moreover, it can be easily noticed
that u is bounded.

For every t > 0 we denote Ut := {u > t}. Let Φ : Ω→ R+ be a bounded measurable function.
We introduce, the H-functional defined for every couple (Ut,Φ) by

H(Ut,Φ) =
1

|Ut|

(∫
∂iUt

ΦdHN−1 +

∫
∂eUt

βdHN−1 −
∫
Ut

|Φ|2dx
)
,

where ∂iUt = ∂Ut ∩ Ω and ∂eUt = ∂Ut ∩ ∂Ω.
The main properties of the H-functional are the following (see [16]):

(A) ∀t ∈ (0, ‖u‖∞) : H(Ut,
|∇u|
u ) = λβ1,2(Ω);

(B) ∀Φ, ∃t ∈ (0, ‖u‖∞) : λβ1,2(Ω) ≥ H(Ut,Φ)

Property (A) is obtained by taking 1
u as a test function in the equation (6) and summing over Ut.

Property (B) is obtained by contradiction: assuming the converse inequality for every t, one gets
that the function

t 7→ t2
∫
Ut

(
Φ− |∇u|

u

) |∇u|
u

dx
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is non increasing on (0, ‖u‖∞). Having zero limits at both 0 and ‖u‖∞, one gets a contradiction.
Let us denote by B the ball of the same measure as Ω and by uB a positive eigenfunction on

the ball. It is very easy to notice that uB is radially symmetric and that |∇uB |uB
≤ β in B. We

dearrange the function |∇uB |
uB

on the level sets (Ut)t, and denote this function ∗Φ. One picks the
value t given by property (B) for the function ∗Φ and writes the following chain of inequalities

λβ1,2(Ω) ≥ H(Ut,
∗Φ) ≥ H

(
Bt∗,

|∇uB|
uB

)
= λβ1,2(B),

where t∗ is chosen such that the measure of Ut equals to the measure of {uB > t∗}. The last inequal-

ity is a direct consequence of the inequality |∇uB |uB
≤ β and the properties of the rearrangement:

the L2 norm of the function is preserved while the perimeter of Ut is larger than the perimeter of
the ball {uB > t∗}. The last equality, is a consequence of property (A) on the ball.

The passage from a smooth set Ω to a Lipschitz set is done by approximation: every bounded
Lipschitz set is the Hausdorff limit of a sequence of smooth C2 domains, such that the normals
converge in a suitable sense (locally in systems of coordinates) (see [16]).

Remark 2.2 The proof of Bossel-Daners based on the properties of the H-functional above, can
be easily extended with no major modification to Lipschitz sets and to the p-Laplacian, i.e. for
minimizers of

min
u∈W1,p(Ω)

u6=0

∫
Ω
|∇u|pdx+ β

∫
∂Ω
|u|pdHN−1∫

Ω
|u|pdx

.

The passage to the p-Laplacian requires the analysis of the eigenfunction on the ball: namely that
the solution is radial and that the maximal ratio of |∇uB |uB

is attained at the boundary. On the other

hand, the passage to Lipschitz sets is done by handling the test function 1
u with more care, since it

lacks of smoothness. We refer the reader to [14, 7] for more details.

Remark 2.3 Up to the knowledge of the authors, the proof based on the H-functional can not be
extended to the Saint-Venant inequality, or to any other λβ1,q, with q 6= 2. A suitable modification
of the H-functional was not (yet) found. In fact, the nonlinear character of the Rayleigh quotient
in the case q 6= 2, as a consequence of the different norms appearing on the fraction, makes that
the properties (A), (B) of the H-functional fail to be true.

Following the proof of Bossel-Daners of Theorem 2.1 in the case q = 2 on Lipschitz sets, several
questions remained unanswered after the publication of [16]:

• Can the Faber-Krahn inequality hold on arbitrary open sets ? As for the torsion problem, it
is not clear what is the correct way to understand Robin conditions in an arbitrary open set.
The validity of the Faber-Krahn inequality is a well posed question with a non-trivial answer
if it is set in the following way: given a bounded open set Ω, is the following inequality true

∀u ∈W 1,2(Ω) ∩ C0(Ω), u 6= 0 :

∫
Ω
|∇u|2dx+ β

∫
∂Ω
u2dHN−1∫

Ω
|u|2dx

≥ λβ1,2(Ω∗)? (7)

More generally, if a pointwise trace on ∂Ω can be defined for any function u ∈ W 1,2(Ω), the
validity of the inequality above is still a well posed question replacing W 1,2(Ω) ∩ C0(Ω) by
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W 1,2(Ω). If Ω is for instance a Lipschitz set from which one removes a Lipschitz crack (so
that the trace is defined on both sides of the crack), or if Ω is an open set with a piecewise
smooth boundary having a finite number of cusps, the question above is still well posed for
any function u ∈W 1,2(Ω). Summarizing, if locally HN−1-a.e. the trace at the boundary can
be defined in some sense, the problem above is still well posed even though W 1,2(Ω) is not
compactly embedded in L2(Ω) and the (pointwise) trace is not continuous from W 1,2(Ω) into
L2(∂Ω).

In other words, is λβ1,2(Ω∗) the worst constant for the Poincaré inequality with trace term

∀u ∈W 1,2(Ω) :

∫
Ω
|∇u|2dx+ β

∫
∂Ω
u2dHN−1 ≥ λβ1,2(Ω∗)

∫
Ω
|u|2dx?

• For q 6= 2 (in particular for q = 1) is the following inequality true (in the family of Lipschitz
sets, or in a more general setting as described above)

λβ1,q(Ω) ≥ λβ1,q(Ω
∗) ?

Remark 2.4 (The Robin problem on arbitrary open sets.) We recall in the sequel the
perspective of Daners [15] (see also Arendt and Warma [2]) to define the Robin problem in a
non smooth setting. Let Ω be an arbitrary bounded open set. The way followed in [15] to define
the Robin problem is to replace the classical Sobolev space W 1,2(Ω) by the so called Maz’ja space
W 1,2(Ω, ∂Ω) which is defined as the completion of W 1,2(Ω) ∩ C0(Ω) for the norm | · |W 1,2(Ω) + | ·
|L2(∂Ω,HN−1).

It turns out that W 1,2(Ω, ∂Ω) is, in general, a subspace in W 1,2(Ω) and coincides sometimes with
W 1,2(Ω), provided that Ω has some smoothness, as for example it is Lipschitz regular. This space
has some good properties, but also some important inconvenients. Here are the good properties:

• It is a well defined Hilbert space for every bounded open set, which coincides with the ”true”
Sobolev space provided some smoothness of the boundary is available.

• The embedding of W 1,2(Ω, ∂Ω) in L2(Ω) is compact, whatever the regularity of Ω is.

• Every function from W 1,2(Ω, ∂Ω) has a trace at ∂Ω. Inequality (7) is well posed for every
function u ∈W 1,2(Ω, ∂Ω), in view of the existence of a trace term.

The main inconvenients of the space have an impact on the interpretation of the Robin boundary
conditions in a non-smooth setting and on the lack of geometric stability of the Robin problem in
this setting. Here we list the most important ones.

• A function u ∈ W 1,2(Ω, ∂Ω) may have several traces on ∂Ω, in particular the zero function
may have the trace 1 on some part of the boundary (see for instance [2]).

• The space W 1,2(Ω, ∂Ω) is not well suited to deal with inner cracks, even if they are given by
smooth hypersurfaces: indeed, due to the density of W 1,2(Ω) ∩ C0(Ω), only one trace along
the cracks is admitted.

• As W 1,2(Ω, ∂Ω) may be strictly smaller than W 1,2(Ω) if Ω is not smooth, one may expect
that the eigenvalues of the Robin-Laplacian (or the torsion energy) are strictly larger than
the ones defined on W 1,2(Ω), provided that their definition in W 1,2(Ω) is possible by some
different interpretation of the trace. From this perspective, any Faber-Krahn inequality for
arbitrary domains which relies on the Maz’ja space would be weaker than the expected one.
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3 Proof of the Saint-Venant inequality for the Robin-Laplacian

The complete proof of Theorem 2.1 with the full comprehension of the non-smooth setting was
given in [10] and is based on a free discontinuity approach. In this section, we shall give the main
ideas of the proof in the case q = 1. This choice brings a little simplification of the exposition. We
refer to the full proof and to the general case to reference [10].

Before any technical attack of the problem, let us give the principle of the proof, which can be
stated as

”Existence and regularity of the optimal set =⇒ it is the ball”, (8)

from the perspective of the shape optimization problem

min{Eβ(Ω) : Ω ⊆ RN bounded and open, |Ω| = c}. (9)

The proof of this principle relies on reflection arguments which will be described below. We also
refer the reader to [8] where a similar approach is employed for the Dirichlet-Laplacian, which
naturally raises less technical difficulties. For the minimization of integral functionals, we refer
the reader to [20, 19]. This idea is also present in a different setting in [13] and is also related to
the celebrated gap in the proof of the isoperimetric inequality by Steiner (see [5]). In fact, Steiner
proved that if a smooth two dimensional open set is not the disc, then there exists another set which
has the same measure but a strictly lower perimeter. Of course, this does not give a complete proof
to the isoperimetric inequality since precisely the existence of a smooth minimizer of the perimeter
among sets of prescribed area is missing.

Step 1. Proof of the principle (8). Assume that Ωopt is a solution for (9), which is smooth.
Smoothness has to be understood in a weak sense: we require only that the optimal set is open
and that the normal can be defined in a certain weak sense, coming from integration by parts. For
simplicity of the exposition, let us assume that Ωopt has a piecewise Lipschitz boundary2 . The
optimality of Ωopt entails that Ωopt is connected. Let u be the associated torsion function.

Up to a translation, the torsion function is radially symmetric. Assume that

Eβ(Ωopt) ≤ Eβ(Ω),

for every piecewise Lipschitz open set Ω. The optimality above can be rewritten as

1

2

∫
Ωopt

|∇u|2dx+
β

2

∫
∂Ωopt

u2dx−
∫

Ωopt

udx = Eβ(Ωopt) ≤

≤ Eβ(Ω) ≤ 1

2

∫
Ω
|∇v|2dx+

β

2

∫
∂Ω
v2dx−

∫
Ω
vdx,

for every function v ∈ W 1,2(Ω). In order to see that u is radially symmetric, we employ reflection
arguments of the following type.

We consider a hyperplane π which divides Ωopt in two parts Ω±opt with equal volume and denote

A± =
1

2

∫
Ω±opt

|∇u|2dx+
β

2

∫
∂Ω±opt

u2dx−
∫

Ω±opt

udx.

2The precise regularity has to be understood in the free discontinuity framework. The piecewise Lipschitz regularity
is only required here to support the intuition of the trace.
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Employing the algebraic inequality

A+ +A− ≥ 2 min{A+, A−}, (10)

we choose the side with minimal energy and reflect it with respect to π, constructing a new optimal
domain, which is now symmetric with respect to π. By symmetrizing successively with respect
to hyperplanes parallel to the coordinate axis, we end up with a new domain Ω̃opt with a center
of symmetry, which we may assume as the new origin of our coordinate system. Note that the

Figure 1: The left side of Ωopt is reflected to build the new optimal domain.

fact that we have now a new optimal domain will not have any influence on the uniqueness of a
minimizer.

The optimal domain is a ball. The domain Ω̃opt is connected thanks to its optimality, with
Eβ(Ω̃opt) achieved on an function ũ which is given by successive reflections of the original u asso-
ciated to Ωopt. Now, every hyperplane π through the origin divides Ω̃opt in two parts with equal
volume, so that the reflection of at least one of them leads again to a new minimizer of the problem,
with associated function given by the reflection of ũ across π. Since this function should satisfy the
associated Euler-Lagrange equation in Ω̃opt, it is analytic inside Ω̃opt and we get that the normal
derivative ∂ũ

∂n(x) has to vanish on π.
Using analyticity again, and the fact that π was arbitrarily chosen (passing through the origin),

we conclude that ũ is radially symmetric, even though yet it is not clear that Ω̃opt is radial. At this
point we can go back to the original Ωopt. Since the torsion function u is itself analytic and coincides
with ũ on a portion of Ωopt (which is connected), we have a that u is itself a radial analytic function,
and so we have for u a quite restricted choice that can be computed quite explicitly. Indeed we
can write u(x) = ψ(|x|) with ψ : I →]0,+∞[ maximal positive solution of the ordinary differential
equation

−ψ′′ − N − 1

r
ψ′ = 1,

which satisfies the Robin boundary condition

ψ′(|x|) · er(x) + βψ(|x|) = 0 for x ∈ ∂Ωopt,

where er(x) := x/|x|. This condition imposes severe restrictions on the shape of Ωopt, entailing for
example

∂Ωopt ⊆
{
x ∈ RN :

∣∣∣∣ψ′(|x|)ψ(|x|)

∣∣∣∣ ≥ β} . (11)
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This represents a great simplification of the problem: the proof that the domain is a ball is nearly
straightforward.

Indeed, if 0 ∈ Ωopt, one sees that ψ is defined up to the origin with ψ′ ≤ 0 on I and ψ′(0) = 0. In
view of (11), this entails that 0 ∈ Ωopt, so that Ωopt contains a ball centered at the origin. Denoting
by B′ the maximal ball contained in Ωopt, one shows (see [10]) that if Ωopt does not coincides with
B′, then B′ is more convenient for Eβ: the comparison between Eβ(B′) and Eβ(Ωopt) is easily
exploited by restricting ψ(|x|) on B′. The case 0 6∈ Ωopt leads with similar arguments to the
conclusion that Ωopt coincides with an annulus. Finally, a direct comparison by computation shows
that the ball is more convenient than an annulus of the same volume.

Step 2. Proof of the existence and regularity of Ωopt. This is indeed the difficult and
technical part of the proof. In order to prove existence of an optimal domain, one should specify
the class of domains where existence holds. Since in general existence is searched in very large
classes of shapes, a possibility would be to work in the class of all bounded open sets and with the
torsion energy defined through the Maz’ja space:

EMβ (Ω) := inf
u∈W 1,2(Ω,∂Ω)

1

2

∫
Ω
|∇u|2 dx+

β

2

∫
∂Ω
u2 dHN−1 −

∫
Ω
udx,

so to solve the shape optimization problem

inf{EMβ (Ω) : Ω ⊆ RN bounded and open, |Ω| = c}. (12)

This question is well posed, but the strategy to use the Maz’ja spaces for proving existence is
not appropriate. This is essentially related to the fact that the Maz’ja space is strictly smaller than
the natural space where the problem can be correctly set, for a large class of open sets. We have in
mind the example with the cracks which are not seen by the space, but which can naturally occur
as a geometric limit of a sequence of smooth sets.

This means that there is no hope to have upper semicontinuity for the torsional rigidity defined
through the Maz’ja spaces, for natural geometric variations.

In order to introduce a class of open sets with a relaxed definition of the torsional rigidity which
will provide existence, we shift our attention from the domain Ω to the associated torsion function
uΩ ∈ W 1,2(Ω) ∩ L∞(Ω). Let us view uΩ as a BV function on RN by setting uΩ = 0 outside Ω.
Recall that v ∈ BV (RN ) if v ∈ L1(RN ) and the integration by parts formula

∀ϕ ∈ C∞c (RN ) : −
∫
RN

v div(ϕ) dx =

∫
RN

ϕdDv

holds for a suitable finite measure Dv with values in RN . Coming back to uΩ viewed as a BV
function on RN , DuΩ is composed of a part supported on Ω, absolutely continuous with respect to
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the volume Lebesgue measure with density ∇uΩ, and of a part of “jump type” supported on the
jump set JuΩ = ∂Ω and absolutely continuous with respect to HN−1. We thus get uΩ ∈ SBV (RN ),
i.e., uΩ can be interpreted as a special function of bounded variation.

The torsion functional can be rewritten as

Eβ(Ω) =
1

2

∫
RN
|∇uΩ|2 dx+

β

2

∫
JuΩ

(u+
Ω)2 + (u−Ω)2 dHN−1 −

∫
RN

uΩdx,

where one of the two traces of uΩ on its jump set is zero. Note that the surface term is rather
unusual, involving the sum of the traces of u on the jump set. Its form, among the many admis-
sible ones, is chosen in such a way to easily describe the formation of inner cracks by geometric
convergence of the domains, and so it is finally dictated by lower semicontinuity requirements.

In view of the preceding equality, we turn our attention to the following free discontinuity
functional

Fβ(u) :=
1

2

∫
RN
|∇u|2 dx+

β

2

∫
Ju

(u+)2 + (u−)2 dHN−1 −
∫
RN

udx (13)

and try to minimize it on positive functions u ∈ SBV (RN ) with |{u > 0}| ≤ c.
The idea is to recover an optimal domain by looking at the support of minimizers. This strategy

is subordinated clearly to regularity issues, which can ensure that the support is indeed a quite
regular domain.

Existence of a minimizer for the free discontinuity problem. The existence of a minimizer
uopt for (13) is not straightforward, since the coercivity available for a minimizing sequence is not
compatible with Ambrosio’s compactness theorem in SBV [1].

By means of the concentration-compactness principle of Pierre-Louis Lions [17, 18], and
employing lower semicontinuity properties for the functional Fβ, we recover the existence of a
candidate minimizer uopt ≥ 0 with u2

opt ∈ SBV (RN ), i.e., such that Fβ(uopt) ≤ Fβ(v) for every

admissible v ∈ SBV (RN ).
This function can be easily proved to be in L∞, for instance by the standard De Giorgi technique,

but it is not yet in SBV . This last fact is by itself a sort of regularity result, which can be seen
as a non degeneracy of the free boundary, related to the Hopf maximum principle. Precisely, one
proves the following.

Lemma 3.1 There exists α > 0 such that

for a.e. x ∈ RN : uopt(x) > 0 =⇒ uopt(x) ≥ α.

The main consequence of this lemma is that uopt ∈ SBV (RN ) and that HN−1(Juopt) is finite.

Ahlfors regularity of the jump set of minimizers. The regularity for uopt we need in order to
recover a domain for the torsion problem, reduces to prove that the jump set Juopt is closed. This is
a consequence of the fact that the function uopt is an almost quasi-minimizer for the Mumford-Shah
functional. Precisely, taking x ∈ Juopt and comparing the energies for the function uopt and for a
function v ∈ SBV (RN ) such that {uopt 6= v} ⊆ Br(x) one gets∫

Br(x)
|∇uopt|2dx+ βα2HN−1(Juopt ∩Br(x))

≤
∫
Br(x)

|∇v|2dx+ 2‖uopt‖2∞βHN−1(Jv ∩Br(x)) + 2rN (ωN + d)‖uopt‖∞,
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for some value d > 0, provided that the radius r is smaller than some constant.
Following the general Ahlfors regularity result of [12], the quasi-minimality property of uopt

implies that Juopt is essentially closed (HN−1(Juopt \ Juopt) = 0) and that it satisfies for HN−1-a.e.
point x ∈ Juopt and for small radius r

C ≤
HN−1(Juopt ∩Br(x))

rN−1
≤ 1

C
,

where C > 0 is a suitable constant.
Let Ωopt be the union of the connected components of RN \ Juopt where uopt is not vanishing.

This is an open set whose boundary is contained in Juopt , which is a rectifiable set with finite
HN−1-measure. By optimality we get that Ωopt is connected and that |Ωopt| = c.

The class A(RN ) of admissible domains. In view of the regularity properties of the minimizers
of (13) described above, we are led to introduce the following class of domains

A(RN ) := {Ω ⊆ RN : Ω is open with |Ω| < +∞,

and ∂Ω is rectifiable with HN−1(∂Ω) < +∞}. (14)

The rectifiability of ∂Ω is a sort of piecewise regularity in the sense of geometric measure theory: it
means that ∂Ω is contained, up to HN−1-negligible sets, into the union of a countable family of C1-
regular manifolds. This weak regularity requirement is readily seen to be stable under intersections
and reflections. Moreover a normal vector field ν on ∂Ω can be defined, and this is an important
information for the Robin condition. Finally domains in A(RN ) have finite perimeter, so that a
weak form of the integration by parts is still available.

In view of the form of the free discontinuity functional, for every Ω ∈ A(RN ) we define

Eβ(Ω) := inf
u∈W 1,2(Ω)∩L∞(Ω)

1

2

∫
Ω
|∇u|2 dx+

β

2

∫
∂Ω

(u+)2 + (u−)2 dHN−1 −
∫

Ω
udx. (15)

The traces in (15) are well defined since, after extending by zero outside Ω, u belongs to
SBV (RN ). In view of the fine properties of BV functions, at HN−1-a.e. point of x ∈ ∂Ω with
normal ν(x), the two values

u±(x) = lim
r→0+

1

|B±r (x, ν(x))|

∫
B±r (x,ν(x))∩Ω

u(y) dy

are well defined, where B±r (x, ν(x)) := {y ∈ Br(x) : (y − x) · ν(x) ≷ 0}, and the integrals in (15)
can be computed.

Note that the form of Eβ(Ω) takes automatically into account that ∂Ω may contain ”cracks”,
so that the two traces u± on both sides have to be considered. Naturally, the trace coming from
outside Ω, i.e. from Ωc, is vanishing, so that u+ = 0. Finally, if Ω was Lipschitz, the torsion energy
clearly reduces to the classical one.

The analysis of the free discontinuity functional (13) entails that for a minimizer uopt we have
that the associated support Ωopt belongs to A(RN ) and that

Fβ(uopt) = Eβ(Ωopt).

This easily entails that the minimization of Eβ on A(RN ) under a volume constraint is well posed.
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Theorem 3.2 For every β, c > 0 the problem

min{Eβ(Ω) : Ω ∈ A(RN ), |Ω| = c}, (16)

has a solution.

Theorem 3.2 together with Principle (8) entail the validity of Theorem 1.1, since the torsion
energy reduces to the classical one for Lipschitz regular sets. Indeed, we recover a strengthened
optimality property for the ball, since also nonsmooth domains are taken into account.

Finally, as detailed in [9, Section 3], if Ω ⊆ RN is open and bounded, and u ≥ 0 belongs
to the Maz’ja space W 1,2(Ω, ∂Ω), then after an extension by zero outside the domain, we have
u2 ∈ SBV (RN ) with

Fβ(u) ≤ 1

2

∫
Ω
|∇u|2 dx+

β

2

∫
∂Ω
u2 dHN−1 −

∫
Ω
udx.

This inequality easily implies that the solution of problem (12) is still the ball.

Remark 3.3 The class A(RN ) defined in (14) provides a natural framework for the shape op-
timization problems under Robin boundary conditions: in this direction we refer the reader to
[11].

4 Open questions

Below we present two open questions which occur naturally in the context of Faber-Krahn inequal-
ities for the Robin-Laplacian.

Open problem 1.

A. Let p ∈ (1,+∞] and Ω ⊆ RN a bounded Lipschitz set. Is it true that among all Lipschitz
domains of prescribed measure, the one which maximizes the p-norm of the torsion function for
the Robin-Laplacian is the ball? In other words, is it true that |uΩ|p ≤ |uΩ∗ |p for p ∈ (1,+∞]?

B. A stronger version of the question above is the following. Is it true that

u∗Ω(x) ≤ uΩ∗(x), a.e. x ∈ Ω∗?

In the case of Dirichlet boundary conditions, both problems have a positive answer given by Talenti’s
rearrangement theorem. In this paper, we gave a positive answer to Problem A in the case p = 1.
For the other values of p, our proof does not work.

Open problem 2. The eigenvalue problem (5) can be correctly set for every q ∈ [1, 2N
N−1).

Nevertheless, the validity of the Faber-Krahn inequality stating that

λβ1,q(Ω) ≥ λβ1,q(Ω
∗)

was proved only for the case q ∈ [1, 2] (see [10]). For q ∈ (2, 2N
N−1) only a (weaker) penalized version

is proved to hold, namely that for every c > 0

λβ1,q(Ω) + c|Ω| ≥ λβ1,q(Ω
∗) + c|Ω∗|.
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In order to prove the strong version for q ∈ (2, 2N
N−1) a way to attack this problem is to rely on the

weak version and to prove that the mapping

(0,+∞) 3 r 7→ λβ1,q(Br)

is convex.
In appearance this is a simple problem, since it deals only with the behavior of the eigenvalue

on balls. Nevertheless, some technical difficulties have to be faced and a smart idea has to be found
in order to prove convexity for q ∈ (2, 2N

N−1).

References

[1] L. Ambrosio, N. Fusco, and D. Pallara. Functions of bounded variation and free discontinuity
problems. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press,
New York, 2000.

[2] W. Arendt and M. Warma. The Laplacian with Robin boundary conditions on arbitrary
domains. Potential Anal., 19(4):341–363, 2003.

[3] M. S. Ashbaugh and R. D. Benguria. Isoperimetric inequalities for eigenvalues of the Laplacian.
In Spectral theory and mathematical physics: a Festschrift in honor of Barry Simon’s 60th
birthday, pages 105–139. Amer. Math. Soc., Providence, RI, 2007.

[4] C. Bandle and A. Wagner. Second variation of domain functionals and applications to problems
with Robin boundary conditions. Report No. 65, Institute for Mathematics, RWTH Aachen
University, 2013.
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[19] O. Lopes. Radial and nonradial minimizers for some radially symmetric functionals. Electron.
J. Differential Equations, pages No. 03, approx. 14 pp. 1996.

[20] M. Mariş. On the symmetry of minimizers. Arch. Ration. Mech. Anal., 192(2):311–330, 2009.

[21] L. E. Payne. Isoperimetric inequalities and their applications. SIAM Rev., 9:453–488, 1967.
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