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Abstract

We characterize all geometric perturbations of an open set, for which the solution
of a nonlinear elliptic PDE of p-Laplacian type with Dirichlet boundary condition is
stable in the L∞-norm. The necessary and sufficient conditions are jointly expressed
by a geometric property associated to the γp-convergence.

If the dimension of the space N satisfies N − 1 < p ≤ N and if the number of
the connected components of the complements of the moving domains are uniformly
bounded, a simple characterization of the uniform convergence can be derived in a
purely geometric frame, in terms of the Hausdorff complementary convergence. Several
examples are presented.

1 Introduction

Let N ≥ 2, p ∈ (1, N ], λ ≥ 0, ε > 0 and D ⊆ RN be a bounded open set. For some

f ∈ L
N
p

+ε(D) and for every open set Ω ⊆ D we consider the following equation set in the
sense of distribution set on Ω {

−∆pu + λ|u|p−2 = f in Ω

u ∈ W 1,p
0 (Ω)

(1)

This equation has a unique solution denoted uΩ,f which, from the choice of f , also belongs
to L∞(Ω). Extended by zero on D \Ω, this solution can be seen as an element of W 1,p

0 (D)∩
L∞(D). The question we are concerned within this paper is to characterize the convergence
of a sequence (Ωn)n towards Ω, such that

uΩn,f −→ uΩ,f in L∞(D), (2)

namely to identify all perturbations of an open set Ω for which the solution of (1) is stable
into the L∞-norm.

The convergence of solutions into the energy space, i.e. uΩn,f −→ uΩ,f in Lp(D), is related
to the γp-convergence of the geometric domains (see [4, 8] and Definition 2.2 in Section 2)
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which can be characterized in terms of the local behavior in capacity of Ωc
n. We refer to the

pioneering paper of Dal Maso [8] for the main study and description of the γp-convergence
via Γ-convergence methods and to [4] for a discussion of the same topic using tools of
potential theory. In concrete situations, understanding whether a given sequence of domains
γp-converges or not may be a complicated question. Nevertheless, different results obtained
in the past years give a quite large number of sufficient conditions for the γp-convergence
(see for instance [5]).

The convergence of solutions in L∞(D) being stronger than the convergence in Lp(D),
the γp-convergence appears to be a necessary condition for (2). As simple examples show,
and because W 1,p

0 (D) is not embedded into L∞(D), the γp-convergence is not sufficient for
(2). Since L∞(D) is not the natural energy space, any approach based on the Γ or Mosco
convergences fails to work. The missing step from the γp to the L∞-convergence of solutions
concerns only a purely geometric behavior of the moving sets. This geometric property
(which turns out to be also a necessary condition) provides the key result for getting locally
uniform oscillations of the solutions near the moving boundaries.

Assuming that Ωn and Ω are regular in the sense of Wiener, the functions uΩn,f , uΩ,f are
continuous on D. For p = 2 the question of studying the uniform convergence uΩn,f → uΩ,f

was raised by Arendt and Daners in [2], where they give a set of sufficient conditions on
the convergence of domains which ensure the uniform convergence of solutions. In the
particular case in which all Ωn are contained in Ω, those conditions are also sufficient.
Recent developments, still in the case p = 2, can be found in [3]. Here the authors make an
extensive study of the L∞-convergence of solutions and give a set of necessary and sufficient
conditions for the uniform convergence under the hypothesis that Ω is stable in the sense of
Keldysh. Although Keldysh stability does not require smoothness, this hypothesis excludes
a quite large class of open sets, as for example domains with cracks.

In this paper we give a characterization of the geometric convergence of domains for
which the solutions convergence in L∞(D). The only assumption we made concerns the
limit set Ω, which is required to be p-Wiener regular at every point of its boundary. This
is the minimal constraint under which uniform convergence can be expected for non-smooth
perturbations. Indeed, if this condition is dropped, then the sequence of increasing domains
(Ω\B(x0,

1
n
))n would not give the L∞-convergence of the solutions (see [2] for the necessity of

the Wiener criterion to have uniform shape stability for increasing sequences). The necessary
and sufficient conditions given in this paper are jointly expressed by a local capacity behavior
of Ωc

n (which is related to the γp-convergence) and a purely geometric condition. If Ωn are
also regular in the sense of Wiener, the L∞(D)-convergence becomes uniform convergence.

From a practical point of view, two consequences can be noticed. If N − 1 < p ≤ N
and if the number of the connected components of Ωc

n is uniformly bounded, then we can
give a simple characterization for the L∞-stability of the solutions if the domains converge
in the (compact) Hausdorff complementary topology. This is mainly possible relying on
the generalization of Šverák’s result obtained in [6] for p-Laplacian type operators. As a
second consequence, we characterize all sets which are L∞-stable for the so called compact
convergence, i.e. we discuss the Keldysh like stability into the L∞-norm of the solutions.
We recover into a non-linear frame the result of [3]. An open set is L∞-stable if and only if
it is stable in the sense of Keldysh and p-Wiener regular at every point of its boundary.
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Notice that the cases N = 1, 1 < p < +∞ and N ≥ 2, N < p < +∞ are not of interest,
since the Sobolev space W 1,p

0 (D) is embedded in a Hölder space C0,α(RN). Consequently,
uniform convergence of solutions holds as soon as the geometric domains converge in the
Hausdorff complementary topology (which is compact). Together with the fact that every
point has positive p-capacity, this gives a complete characterization of the uniform shape
stability. This is the reason why, throughout the paper we consider only the case N ≥ 2 and
1 < p ≤ N .

For simplicity, we present our results for the p-Laplace operator, but most of the results
extend without any modifications of the proofs to more general elliptic equations of the
form −div A(x,∇uΩ)+B(x, uΩ) = 0, with non-homogeneous Dirichlet boundary conditions.
The operator A is similar to the p-Laplacian and B satisfies the usual Carathéodory and
monotonicity assumptions (see Section 5 and [20, 21]). In order to have solutions in W 1,p(Ω)∩
L∞(Ω), the most important assumption is a boundedness hypothesis on B by a function
belonging to the Morrey space MN/(p−ε)(D) (see for instance [21, Chapter 3]).

2 Preliminary results

In what follows, we always denote Ω an open set in RN and by Ωc = RN \Ω its complement.
The Sobolev capacity of a set E ⊆ RN is

capp(E) = inf{
∫

RN

|∇ϕ|p + |ϕ|pdx | ϕ ∈ W 1,p(RN), E ⊆ {ϕ ≥ 1}o}.

For x ∈ RN , r > 0 and a set E such that E ⊆ B(x, r), the condenser capacity of E in the
ball B(x, r) is:

capp(E, B(x, r)) = inf{
∫

B(x,r)

| ∇ϕ |p dx | ϕ ∈ W 1,p
0 (B(x, r)), E ⊆ {ϕ ≥ 1}o}.

A function u : Ω → R is said to be p-quasi continuous if for all ε > 0 there exists an open
set Gε ⊆ Ω with capp(Gε) < ε such that the restriction u|Ω\Gε is continuous on Ω \ Gε. A
property is said to hold p-quasi everywhere (written p-q.e.) if it holds in the complement of
a set of zero p-capacity.

We refer the reader to [15, 21] for an extensive presentation of properties of capacities in
relation with Sobolev spaces. We only recall that every function u ∈ W 1,p

0 (Ω) has a p-quasi
continuous representative, which is unique up to a set of p-capacity zero. We also recall the
following characterization of the W 1,p

0 -spaces (see the paper of Hedberg [14] or [15]).

Lemma 2.1 Let Ω ⊆ RN be an open set. If u ∈ W 1,p(RN) then u ∈ W 1,p
0 (Ω) if and only if

u = 0 p-q.e. on Ωc.

Throughout the paper, W 1,p
0 (Ω) is seen as a subspace in W 1,p(RN), the embedding mapping

being the extension by zero on Ωc.
Let D be a bounded open set of RN .
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Definition 2.2 It is said that a sequence (Ωn)n of open subsets of D γp-converges to an
open set Ω if

∀λ ≥ 0, ∀f ∈ W−1,p′(D) uΩn,f → uΩ,f stronlgy in W 1,p
0 (D).

Here p′ = p/(p− 1).

We refer the reader to [5] for detailed presentation of the γp convergence. We recall (see also
[4], [8]) the following characterization of the γp-convergence in terms of the local behavior in
capacity of the moving domains.

Theorem 2.3 A sequence (Ωn) of open subsets of D γp-converges to an open set Ω if and
only if ∀x ∈ RN ,∀r > 0 the following two conditions hold

capp(Ω
c ∩Bx,r, Bx,2r) ≥ lim sup

n→∞
capp(Ω

c
n ∩Bx,r, Bx,2r). (3)

capp(Ω
c ∩Bx,r, Bx,2r) ≤ lim inf

n→∞
cap(Ωc

n ∩Bx,r, Bx,2r). (4)

We recall from [4] that (3) and (4) are equivalent with the first and the second Mosco
conditions, respectively:
1. ∀ϕ ∈ W 1,p

0 (Ω) ∃ ϕn ∈ W 1,p
0 (Ωn) such that ϕn → ϕ strongly in W 1,p

0 (D);
2. ∀ϕnk

∈ W 1,p
0 (Ωnk

) such that ϕn → ϕ weakly in W 1,p
0 (D) we have ϕ ∈ W 1,p

0 (Ω).
It is worth to notice that the γp-convergence is also equivalent to

uΩn,1 → uΩ,1 weakly in Lp(D)

for some λ ≥ 0, namely with the continuity of the solution with respect to the shape only
in the case f ≡ 1 and for a single value of λ. Moreover, the γp-convergence can be seen via
the Γ-convergence of the energy functionals associated to (1) or via the Mosco convergence
of the moving Sobolev spaces W 1,p

0 (Ωn). As a consequence of the characterization via the
Mosco convergence, if Ωn γp-converges to Ω, then for more general equations of the form
−div A(x,∇uΩ) + B(x, uΩ) = 0 one has uΩn → uΩ strongly in W 1,p

0 (D). It is not clear
whether the converse is true since the right hand side f which is implicitly contained in B
may produce solutions which are not positive p-q.e. (see [11]).

Notice also that the γp-convergence is metrizable but not compact. From the weak
compactness of the unit ball of W 1,p

0 (D) and from the compact embedding into Lp(D), one
can extract from every sequence (uΩn,1)n a subsequence which converges strongly in Lp(D) to
some function u. In general, one can not find an open set Ω such that u = uΩ,1. Nevertheless,
following [11], there exists a positive Borel measure absolutely continuous with respect to
the p-capacity such that for every f ∈ W−1,p′(D)

uΩn,f
Lp(D)−→ uµ,f ,

where uµ,f ∈ W 1,p
0 (D) ∩ Lp(D, µ) and

−∆puµ,f + (λ + µ)|uµ,f |p−2uµ,f = f
4



in the weak variational sense. So, u = uµ,1. This phenomenon is called relaxation (see [11]).
For an open set U ⊆ RN , x ∈ RN , 0 < r < R we use the following notation

w(U, x, r, R) =

∫ R

r

(cap(U c ∩Bx,t, Bx,2t)

cap(Bx,t, Bx,2t)

)p′−1dt

t
.

If h : U → R is a continuous function, we denote

osc(h, U) = sup
x∈U

h(x)− inf
x∈U

h(x).

We recall from [21, Theorem 4.22] (see also [15, Lemma 4.6.5]) the following estimate for
uΩ,f , the solution of (1).

Lemma 2.4 Suppose that Ω is a bounded open set and f ∈ L
N
p

+ε(D). If x0 ∈ ∂Ω, then
∀ 0 < r ≤ R it is true that

osc(uΩ,f , Ω ∩B(x0, r)) ≤ Cexp
(
− 1

C
w(Ω, x, r, R)

)
(5)

where C depends on N , p, ε and |uΩ,f |∞.

Definition 2.5 A point x0 ∈ ∂Ω is called p-Wiener regular for Ω if limr→0 w(Ω, x0, r, R) =
+∞.

We recall from [17] the following result.

Lemma 2.6 Let x0 ∈ ∂Ω. The following assertions are equivalent:
i) For f ≡ 1, limx→x0,x∈Ω uΩ,1(x) = 0.
ii) x0 is p-Wiener regular.

Definition 2.7 Let Ω be open. A point x ∈ ∂Ω is a called p-capacity point if ∀ε > 0
capp(Ω

c ∩B(x, ε), B(x, 2ε)) > 0.

The following result has an immediate proof.

Lemma 2.8 Let Ω be a bounded open set and let

Ω∗ = Ω ∪ {x ∈ ∂Ω : x is not a p-capacity point}.

Then Ω∗ is open and capp(Ω
∗ \ Ω) = 0.

3 The shape stability result

Let us set N ≥ 2 and 1 < p ≤ N . Let D be a smooth bounded open set and let Ωn, Ω be
open subsets of D. We assume that Ω is p-Wiener regular at every point of its boundary.

Theorem 3.1 For every ε > 0, λ ≥ 0 and f ∈ L
N
p

+ε(D) we have uΩn,f → uΩ,f in L∞(D) if
and only if the following two relations hold.
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1. ∀K ⊂⊂ Ω, ∃NK, ∀n ≥ NK we have K ⊂⊂ Ω∗
n.

2. ∀x ∈ RN , ∀r > 0

capp(B(x, r) ∩ Ωc, B(x, 2r)) ≤ lim inf
n→∞

capp(B(x, r) ∩ Ωc
n, B(x, 2r)).

Proof Necessity. Assume that for every ε > 0, λ ≥ 0 and f ∈ L
N
p

+ε(D) we have uΩn,f →
uΩ,f in L∞(D). In particular, we consider f ≡ 1, λ = 0 and get uΩn,1 → uΩ,1 in L∞(D).
Since D is bounded, this convergence holds also in Lp(D). Consequently Ωn γp-converges to
Ω, hence from [4] relation 2. holds.

Assume for contradiction that 1. does not hold. Then, there exists a compact set K ⊂ Ω,
there exists nk → ∞ such that K 6⊂ Ω∗

nk
. Let xk ∈ K \ Ω∗

nk
and assume (maybe extracting

a subsequence) that xk → x ∈ K. The point x being interior to Ω, we can find r, δ > 0 such
that B(x, r) ⊆ Ω and

uΩ,1(x) ≥ δ > 0 a. e. on B(x, r). (6)

By hypotheses, the L∞-convergence gives that for n large enough uΩn,1 ≥ δ/2 a.e. on
B(x, r). This inequality is also true p-q.e. for a quasi continuous representative. But
xk ∈ (Ω∗

nk
)c and xk → x. Thus, for k large enough we have xk ∈ B(x, r/2) ∩ (Ω∗

nk
)c, and

since xk is a p-capacity point for Ω∗
nk

, we get that

capp(B(xk, r/2) ∩ (Ω∗
nk

)c) > 0.

This contradicts relation (6) since on the set B(xk, r/2)∩(Ω∗
nk

)c, which is of positive capacity,
uΩnk

,1 vanishes p-q.e.

Sufficiency. Relations 1. and 2. give that Ωn γp-converges to Ω. This is a direct consequence
of the local behavior in capacity of Ωc

n (see Theorem 2.3 and [4]). Indeed, relation 1. gives
the upper semicontinuity of the local capacity on closed balls, namely (3), and 2. gives the
lower semicontinuity on open balls, namely (4).

Consequently, for every f ∈ L
N
p

+ε(D) the convergence of solutions holds in W 1,p
0 (D). It

remains to prove that the convergence holds also in L∞(D). Two cases are to be treated. On
compact subsets of Ω the uniform convergence holds as a consequence of the equi continuity
of (uΩn,f )n. The difficult part is to control the oscillations of uΩn,f near the boundaries ∂Ωn

and to prove that they behave somehow uniformly with respect to n.
Let ε > 0 be fixed. We have to prove the existence of Nε ∈ N such that ∀n ≥ Nε, and

a.e. x ∈ D
|uΩn,f (x)− uΩ,f (x)| ≤ ε.

Let us fix R > 0 and take x ∈ ∂Ω. By hypothesis, x is a regular point, hence

lim
r→0

w(Ω, x, r, R) = +∞.

Thus, there exists r = rx > 0 such that

C exp
(
− c

2C
w(Ω, x,

rx

2
,
R

2
)
)
≤ ε

4
, (7)
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C exp
(
− 1

C
w(Ω, x, rx, R)

)
≤ ε

4
. (8)

Here, C is the constant given in relation (5) and c is the constant given by the following
lemma (for the proof, see [4]).

Lemma 3.2 There exists a positive constant c, depending only on N and p such that ∀R >
r > 0 , ∀x1, x2 ∈ RN with |x1 − x2| ≤ r/2 we have

w(Ω, x1, r, R) ≥ cw(Ω, x2,
r

2
,
R

2
). (9)

We cover ∂Ω with the balls B(x, rx/4) obtained using (7)-(8), and since ∂Ω is compact
there exists a finite covering

∂Ω ⊆
⋃
i∈I

B
(
xi,

rxi

4

)
.

Let
K1 = Ω \

⋃
i∈I

B(xi,
rxi

4
) = Ω \

⋃
i∈I

B(xi,
rxi

4
).

Then K1 is compact and K1 ⊂⊂ Ω. By hypothesis 1), we have for large enough that

K1 ⊂⊂ Ω∗
n.

Let us denote
K = Ω \

⋃
i∈I

B(xi,
rxi

2
).

Then K ⊆
◦

K1 and
uΩn,f −→ uΩ,f uniformly on K.

This is a consequence of the uniform boundedness of all functions, their convergence in
W 1,p

0 (D) and of their equi-continuity ( Lemma 3.3 below). Indeed, the following equi-
continuity result is a direct consequence of [21, Theorem 4.11].

Lemma 3.3 There exists α > 0 and a constant C such that for every open set Ω ⊆ D,

f ∈ L
N
p

+ε(D) and for every ball B(x, R) ⊂⊂ Ω and 0 < r < R we have

oscB(x,r)uΩ,f ≤ Crα.

The constant C depends on N, p, R, ε and ‖f‖
L

N
p +ε

(D)
.

It remains to prove the L∞-convergence on
⋃

i∈I B(xi,
rxi

2
) and on D\(Ω∪i∈I B(xi, rxi

/2)),
respectively.

On
⋃

i∈I B(xi,
rxi

2
) we shall control the oscillations of uΩn,f with the help of the Wiener

modulus of Ω.
Let us fix an index i ∈ I and let x ∈ B(xi,

rxi

2
). The modulus inequality gives

|uΩn,f (x)− uΩ,f (x)| ≤ |uΩn,f (x)|+ |uΩ,f (x)|.
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We will estimate separately both |uΩn,f (x)| and |uΩ,f (x)|. Since xi is a regular point, we
have from (8) and from Lemma 2.4 that for every x ∈ B(xi, rxi

) ∩ Ω

|uΩ,f (x)| ≤ C exp
(
− 1

C
w(Ω, x, rx, R)

)
≤ ε

4
(10)

The constant C depends on |uΩ,f |∞ but can be chosen independently with respect to Ω since
from the maximum principle all solutions uΩ,f are uniformly bounded on D by |uD,|f ||∞.

If x ∈ Ωc∩B(xi, rxi
), then p-q.e. uΩ,f (x) = 0. Let us now estimate |uΩn,f (x)| on B(xi, rxi

).
From the γp-convergence we get for n large enough

capp(B(xi, rxi
) ∩ Ωc

n, B(xi, 2rxi
)) > 0.

There are two possibilities. Either B(xi, rxi
/2) ∩ Ωn = ∅ and in this case uΩn,f (x) = 0

p- q.e. on B(xi, rxi
/2), or B(xi, rxi

/2) ∩ Ωn 6= ∅. From [4] we recall the following technical
result.

Lemma 3.4 Let Ω be an open set such that Ω∩B(x, δ) 6= ∅ and capp(Ω
c∩B(x, δ), B(x, 2δ)) >

0. Then capp(∂Ω ∩B(x, δ), B(x, 2δ)) > 0.

In the latter case, Lemma 3.4 applies and gives that

capp(∂Ωn ∩B(xi, rxi
/2), B(x, rxi

)) > 0.

We observe that hypotheses 1. and 2. imply the γp-convergence via Theorem 2.3. From
the Fatou lemma and the equality

capp(Ω
c ∩B(x, δ), B(x, 2δ)) = capp(Ω

c ∩B(x, δ), B(x, 2δ))

which holds a.e. δ > 0 we get directly that (see [4, 5] for finer results) for every x ∈ RN and
∀0 < r < R

lim inf
n→∞

w(Ωn, x, r, R) = w(Ω, x, r, R). (11)

By (11) we get that

w(Ω, xi,
rxi

2
,
R

2
) = lim

n→∞
w(Ωn, xi,

rxi

2
,
R

2
). (12)

Consequently, there exists N ∈ N such that for every n ≥ N we have

w(Ωn, xi,
rxi

2
,
R

2
) ≥ 1

2
w(Ω, xi,

rxi

2
,
R

2
). (13)

Thus, using Lemma 3.2, for every y ∈ B(xi,
rxi

2
) we have that

w(Ωn, y, rxi
, R) ≥ c

2
w(Ω, xi,

rxi

2
,
R

2
). (14)

Since capp(∂Ωn ∩ B(xi, rxi
/2), B(x, rxi

)) > 0, we can find a point yn ∈ ∂Ωn ∩ B(xi, rxi
/2)

which is p-regular for Ωn. We apply estimate (8) for Ωn and get for every x ∈ B(yn, rxi
)∩Ωn

|uΩn,f (x)| ≤ C exp(− 1

C
w(Ωn, yn, rxi

, R))

≤ C exp(− c

2C
w(Ω, xi,

rxi

2
,
R

2
))

(15)
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Using (7) we get

|uΩn,f (x)| ≤ ε

4
.

On the other hand, on B(yn, rxi
) ∩ Ωc

n we have uΩn,f (x) = 0 p-quasi everywhere.
Consequently

|uΩn,f (x)| ≤ ε

2
p-q.e. x ∈ B(yn, rxi

). (16)

Since B(xi, rxi
/2) ⊆ B(yn, rxi

), we get that

|uΩn,f (x)|+ |uΩ,f (x)| ≤ ε p-q.e. x ∈ B(xi,
rxi

2
).

It remains to prove that ∀x ∈ D \ (Ω ∪i∈I B(xi, rxi
/2)) we have (for n large enough)

|uΩn,f (x)− uΩ,f (x)| ≤ ε.

Since D \ (Ω ∪i∈I B(xi, rxi
/2)) is compact, we will follow a similar argument as for the

neighborhood of ∂Ω. For every x ∈ D \ (Ω ∪i∈I B(xi, rxi
/2)) we fix rx as in (7)-(8). Such rx

exists since for r small enough

capp(Ω
c ∩B(x, r), B(x, 2r)) = capp(B(x, r), B(x, 2r)).

We cover D \ (Ω ∪i∈I B(xi, rxi
/2)) by a finite family of balls

D \ (Ω ∪i∈I B(xi, rxi
/2)) ⊆ ∪j∈JB(xj, rxj

/4).

We fix an index j and get for every B(xj, rxj
/4)

|uΩn,f (x)− uΩ,f (x)| = |uΩn,f (x)|.

In order to estimate |uΩn,f (x)| two possibilities may occur. Either B(xj, rxj
/4) ∩ Ωn = ∅ or

not. In the first case, obviously uΩn,f (x) = 0. In the second case, by Lemma 3.4 we get

capp(∂Ωn ∩B(xj, rj/2), B(xj, rj)) > 0,

and a similar argument as for the neighborhood of ∂Ω in (12)-(16) holds true. Finally,

|uΩn,f (x)| ≤ ε p-q.e. x ∈ B(xj, rxj
/4).

2

Remark 3.5 Assume that for some λ ≥ 0 and f ≡ 1 we have uΩn,1 → uΩ,1 in L∞(D). The

proof of Theorem 3.1 yields that for every λ ≥ 0, ε > 0 and for every f ∈ L
N
p

+ε(D) we have
uΩn,f → uΩ,f in L∞(D).

This kind of behavior is typical for the γp-convergence. We refer the reader to [3] for
further developments of this topic into the linear case.

Let us set the following notation.
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Notation 3.6 Let Ωn, Ω be open subsets of D. If assertions 1. and 2. of Theorem 3.1 hold,
we denote

Ωn
∞p−→ Ω.

We formulate the following corollary which is a clear consequence of Theorem 3.1.

Corollary 3.7 Let Ωn, Ω be open subsets of D. Then Ωn
∞p−→ Ω if and only if the following

relations hold.

1. ∀K ⊂⊂ Ω, ∃NK, ∀n ≥ NK we have K ⊂⊂ Ω∗
n.

2. Ωn γp-converges to Ω.

Proof For the necessity we use Theorem 3.1 and get the first assertion. In order to get
the γp-convergence, we notice that the first assertion gives (3) which associated to (4) and
Theorem 2.3 gives the γp-convergence.

For the sufficiency, we apply Theorems 3.1 and 2.3.
2

For searching the “minimal” intuitive conditions which provide shape stability into the L∞-
norm, one may use the following.

Corollary 3.8 Let Ωn, Ω be open subsets of D. Then Ωn
∞p−→ Ω if and only if the following

relations hold.

1. ∀K ⊂⊂ Ω, ∃NK, ∀n ≥ NK we have K ⊂⊂ Ω∗
n.

2. ∀ϕnk
∈ W 1,p

0 (Ωnk
) such that ϕnk

converges weakly in W 1,p
0 (D) to ϕ, we have ϕ ∈

W 1,p
0 (Ω).

Proof The proof is a consequence of Theorem 3.1 and of the equivalence between the
second Mosco condition (condition 2. above) and the lower semicontinuity of the local
capacity (condition 2. in Theorem 3.1). We refer the reader to [4] for the proof of this
equivalence. 2

For applications in concrete situations, the conditions expressed in this corollary are the
most intuitive. Indeed, the first condition is purely geometric and can be easily verified in
practical situations. Using Hedberg’s result (Lemma 3.3) on the description of W 1,p

0 -spaces
via quasi-continuous representatives (see [14]), the second condition can be easily checked as
soon as Ω has some smoothness.

Remark 3.9 We notice that the L∞-convergence of solutions can not hold if relaxation for
the γp-convergence occurs. Indeed, let f ≡ 1 and fix λ ≥ 0. Then uµ > 0 p-q.e. on the
regular set Aµ of the measure µ. Assuming that relaxation occurs means that µ(Aµ) > 0.

Consider δ > 0 and the p-quasi open set Uδ = {uµ > δ} which is also of positive Lebesgue
measure (for δ enough small). For n large enough we would have

|uΩn,1 − uµ| ≤
δ

2
a.e. on Aµ,
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hence p-q.e. since Aµ is p-quasi open. Then capp(Uδ ∩ Ωc
n) = 0 and consequently from the

γp convergence µ(Uδ′) = 0 for δ′ > δ. Finally, taking δ → 0 we would get µ(Aµ) = 0, which
is a contradiction with our relaxation assumption (see [9]).

Remark 3.10 If Ω would not be p-Wiener regular at every point of its boundary, following
Lemma 2.6, at such a point and for f = 1, the solution of (1) on Ω would be discontinuous.

Therefore, if Ωn
∞p−→ Ω, then uΩn,1 should be discontinuous either. This means that every

p-irregular point of Ω should be, for n large enough an irregularity point for Ωn. As a
consequence, the sequence Ω \B(x0, 1/n) does not ∞p-converge to Ω!

Nevertheless, the shape stability in L∞(D) could steel hold if Ω is not p-Wiener regular
at every point of its boundary, but the perturbation is highly restrictive and the expression
of the stability conditions is certainly more complicated.

4 Examples of ∞p-convergence of domains

The main interest in applications is to understand for a specific perturbation whether or not
the solution of (1) is stable in the L∞-norm. Although the second condition in Theorem
3.1 seems difficult to understand in practice, following Corollaries 3.7 and 3.8 this condition
can be replaced with the γp-convergence which is well studied in the literature or with the
second Mosco condition which sometimes can be proved easily. Besides the case of uniformly
smooth domains (e.g. domains satisfying a uniform cone condition), the γp-convergence can
be obtained into the following frame: geometric convergence of the domains in the Hausdorff
complementary topology associated to some geometrical, topological or capacity assumptions
on the moving domains. We also notice another particular case of γp-convergence which is
more restrictive, namely the compact convergence of domains associated to a limit domain
which is stable in the sense of Keldysh (see [4]).

The Hausdorff complementary topology is given by the metric:

dHc(Ω1, Ω2) = sup
x∈Rn

|d(x, Ωc
1)− d(x, Ωc

2)|.

Note that if Ωn
Hc

−→ Ω, then condition 1. of Theorem 3.1 is automatically satisfied. Then

Ωn
∞p−→ Ω, provided that Ω is p-Wiener regular at every point of its boundary and that

Ωn
γp−→ Ω.

The most general situation in which the γp-convergence is known to be equivalent to the
Hausdorff complementary convergence involves a sort of locally uniform Wiener criterion
(see [6] and paper [13] for a first result into this direction).

This is for example the case in RN as soon as there exists c, r > 0 such that for every
n ∈ N the sets Ωn satisfy the following uniform capacity density condition [7, 5]:

∀x ∈ ∂Ωn ∀t ∈ (0, r)
capp(Ω

c
n ∩Bx,t, Bx,2t)

capp(Bx,t, Bx,2t)
≥ c. (17)

A geometric situation when the uniform capacity density condition is satisfied, is the so
called flat cone condition, i.e. there is a closed cone T of dimension N−1 such that for every

11



point x0 on the boundary of every Ωn there exists a cone congruent with T with vertex in
x0, lying in the complement of Ωn.

In N dimensions of the space and for p ∈]N − 1, N ], the generalization of Šverák’s result
proved in [6] gives that the γp-convergence is equivalent to the Hc-convergence in the class of
domains for which the complementary sets have at most a fixed number, say l, of connected
components. We denote by ]Ωc the number of the connected components of RN \ Ω.

Proposition 4.1 Let p ∈]N−1, N ] and l ∈ N be fixed, and let Ωn ⊆ D be such that ]Ωc
n ≤ l.

Assume Ω∗
n = Ωn and Ωn

Hc

−→ Ω. Then Ωn
∞p−→ Ω if and only if Ω = Ω∗.

The assumption Ω∗
n = Ωn is not restrictive at all since this means that ∂Ωn should not have

isolated points (so just remove the isolated points of ∂Ωn; there are at most l, hence of zero

p-capacity). Moreover, the assumption Ωn
Hc

−→ Ω is not restrictive either since the Hc metric
topology is compact. In fact, an equivalent formulation of this proposition is the following:

let p ∈]N−1, N ] and l ∈ N be fixed, and let Ωn ⊆ D be such that ]Ωc
n ≤ l. Assume Ωn

Hc

−→ Ω.

Then Ωn
∞p−→ Ω if and only if Ω∗

n
Hc

−→ Ω∗.

Proof (of Proposition 4.1) Let Ωn
Hc

−→ Ω. If Ω∗ = Ω, then Ω is p-Wiener regular at every
point of its boundary, since it does not have isolated points, and every point of the boundary
which is not isolated belongs to a continua of positive diameter. Consequently, Ω is p-Wiener

regular at every point of the boundary and therefore Theorem 3.1 gives Ωn
∞p−→ Ω. Indeed,

condition 1. is a consequence of the Hc-convergence and condition 2. is proved in [6].

For the converse, assume that Ωn
∞p−→ Ω. Then obviously Ωn

∞p−→ Ω∗ since capp(Ω
∗ \Ω) =

0, and Ω∗ is p-Wiener regular at every point of its boundary. Suppose for contradiction that
Ω 6= Ω∗, i.e. Ωc has an isolated point x0. This means that there exists a sequence of continua
of positive diameter Kn which are connected components of Ωc

n such that Kn converges in
the Hausdorff sense to {x0}. Consequently condition 1. of Theorem 3.1 is violated for the
sequence (Ωn)n associated to the limit set Ω∗ by simply taking K = B(x0, ε), with ε small
enough. 2

Remark 4.2 Given δ > 0, in N dimensions of the space and for p ∈]N − 1, N ] one can
consider the following class of domains:

{Ω ⊆ D : Ωc = ∪αKα, Kα connected diam Kα ≥ δ},

which satisfy a uniform capacity density condition. Then

Ωn
Hc

−→ Ω =⇒ Ωn
∞p−→ Ω.

All examples below (Figures 1, 2 and 3) give ∞p-convergence in 2D for 1 < p ≤ 2.

Remark 4.3 Let p = 2 in (1). A more precise estimate can be derived into the class defined
by relation (17). For a given ε > 0, here exists α ∈ (0, 1] and C > 0 such that for every

f ∈ L
N
2

+ε(D) and every Ω1, Ω2 ∈ D we have

|uΩ1,f − uΩ2,f |L∞(D) ≤ C(dHc(Ω1, Ω2))
α|f |

L
N
2 +ε(D)

. (18)
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ε

Figure 1: The thickness ε of the tube converges to zero.

ε

Figure 2: Oscillating crack with vanishing ”amplitude” ε.

Indeed, in order to compute |uΩ1,f − uΩ2,f |L∞(D) one has only to look for

M = max{ sup
x∈Ω1\Ω2

|uΩ1,f (x)|, sup
x∈Ω2\Ω1

|uΩ2,f (x)|},

since
|uΩ1,f |Ω1∩Ω2 − uΩ2,f |Ω1∩Ω2|L∞(Ω1∩Ω2) ≤ 2M.

Since Ω1, Ω2 satisfy (17), the solutions uΩ1,f and uΩ1,f satisfy

|uΩi,f |0,α ≤ C|f |
L

N
2 +ε(D),

with C and α independent on Ω and f . Consequently, relation (18) follows. This result of
estimating the continuity modulus of the mapping shape → solution is to be related to
[22]. Savarè and Schimperna obtained in [22] estimates of the H1 and L2 norms with respect
to the Hausdorff distance for equi-Lipschitz domains.

5 Further remarks

5.1 Localization of the ∞p-convergence

Proposition 5.1 Let Ω be p-Wiener regular at every point of its boundary and Ωn open
subsets of D. The following assertions are equivalent.

i) Ωn
∞p−→ Ω,

ii) ∃(Ui)i∈I a family of open sets, with union covering D, such that every Ui is p-Wiener
regular and

∀i ∈ I Ωn ∩ Ui
∞p−→ Ω ∩ Ui.

Proof Implication i) → ii) is a consequence of the localization property of the γp-convergence
(see [11, Corollary 6.13]).
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ε

Figure 3: Infinite number of cracks of minorated diameter (two neighboring cracks are spaced
by ε).

To prove ii) → i) notice first that if Ω and Ui are p-Wiener regular at every point of
their boundary, then Ω ∩ Ui is Wiener regular at every point of the boundary. From the
localization property of the γp-convergence (see [11]) it is enough to prove property 1. of
Corollary 3.7. Let us consider the compact K ⊂⊂ Ω. Then there exists a finite covering of
K by U1∪ ...∪Uq. We denote Kj = K \ (U1∪ ...∪Uj−1∪Uj+1∪ ...∪Uq). Then for j = 1, .., q
the sets Kj are compact, and their union is K. Using hypothesis ii), for n ≥ Nj with Nj

large enough we have
Kj ⊂ (Ωn ∩ Uj)

∗.

Since (Ωn ∩ Uj)
∗ ⊆ Ω∗

n taking the union in j we get condition 1. of Corollary 3.7. 2

5.2 Convergence of eigenfunctions

We begin with the following preliminary result concerning moving right hand sides.

Lemma 5.2 Let fn ∈ L
N
p

+ε(D) and let fn ⇀ f weakly in L
N
p

+ε(D). If Ω is Wiener regular

at every point of its boundary and if Ωn
∞p−→ Ω then

uΩn,fn

L∞(D)−→ uΩ,f .

Proof From the γp-convergence we get that uΩn,fn−→uΩ,f strongly in W 1,p
0 (D). In order to

prove that the convergence holds in L∞(D), one reproduces the sufficiency part of Theorem
3.1.

To get the uniform convergence on a compact set of Ω one uses the equicontinuity given
by Lemma 3.3 and the uniform boundedness in L∞(D) of (uΩn,fn)n.

For the oscillations of uΩn,fn on ∂Ωn, the same argument as in Theorem 3.1 stands true,
the main point being that the constant C in (5) is the same for every uΩn,fn . Indeed, following
[21] the estimate of the L∞-norm of uΩn,fn (which is crucial for the constant C) depends on

the norm of fn in L
N
p

+ε(D) (which is uniformly bounded with respect to n). 2

In the sequel, we denote by RΩ : L
N
2

+ε(D) → L∞(D) the resolvent operator associated
to problem (1), for p = 2.

Proposition 5.3 Let p = 2. Suppose that Ω is Wiener regular at every point of its boundary
and that Ωn

∞2−→ Ω. Then RΩn → RΩ in L(L
N
2

+ε(D), L∞(D)).
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Proof This is a consequence of Lemma 5.2 and of the fact that the unit ball is weakly
compact in L

N
2

+ε(D). 2

Let us denote for every open set Ω by λk(Ω) the k-th eigenvalue (the multiplicities are
counted) of the Dirichlet Laplacian on Ω and by uΩ,k a corresponding eigenfunction which is
L2-normalized. It is well known that the γ2-convergence gives the convergence of the spec-
trum as a consequence of the convergence RΩn → RΩ in L(L2(D), L2(D)) (see for instance
[5]). Moreover, every sequence of eigenfunctions corresponding to the k-th eigenvalue on Ωn

which weakly converges in H1
0 (D) has as limit a k-th eigenfunction on Ω.

Corollary 5.4 Suppose that Ωn
∞2−→ Ω and Ω 6= ∅. For every k ∈ N we have (up to a

subsequence) that uΩn,k
L∞(D)−→ uΩ,k, where uΩ,k is an L2-normalized eigenfunction associated

to the k-th eigenvalue of the Dirichlet-Laplacian on Ωn·

Proof First, from the γ2-convergence we have that

uΩn,k −→ uΩ,k strongly in H1
0 (D).

From [12, Example 2.1.8] we have the following estimates for the L∞-norm of the eigenfunc-
tions

|uΩn,k|L∞(A) ≤ 3(8πλk(Ωn))
N
4 .

Consequently, if |Ω| 6= 0 then lim supn→∞ λk(Ωn) < +∞ hence one can find a uniform bound

for the L∞-norm of all uΩn,k. Thus, uΩn,k −→ uΩ,k strongly in L
N
p

+1 and the proof is
concluded by using Lemma 5.2. 2

Remark 5.5 Into the nonlinear case (for the p-Laplacian with p 6= 2), the right characteriza-
tion of all eigenvalues is not completely understood. We refer to [19] for a detailed description
of the topic. Nevertheless, using the Rayleigh characterization for the first eigenvalue, one
can easily establish the L∞-convergence of a sequence of normalized first eigenfunctions pro-
vided that the geometric domains ∞p-converge. Already for the second eigenfunctions this
is not anymore clear.

5.3 Extensions to more general elliptic problems

Let us consider two nonlinear operators u 7→ −div A(x,∇u), u 7→ B(x, u) defined on W 1,p
0 (D)

with values on W−1,p′(D). Under suitable assumption on A and B, e.g. −div A be similar to
the p-Laplacian and B be Carathéodory, nondecreasing in the second variable and satisfying

|B(x, ξ)| ≤ α|ξ|p−1 + r,

where α > 0 and r ∈ L
N
p

+ε(D) (or more general r belongs to the Morrey space MN/(p−ε)(D),
see [21, Chapter 3] and [20]), one can extend some of the results of Theorem 3.1.

Let g ∈ C(D) ∩W 1,p
0 (D). For every Ω ⊆ D we consider the problem{

−div A(x,∇uΩ) + B(x, uΩ) = 0 in Ω

uΩ − g ∈ W 1,p
0 (Ω)

(19)
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Existence and uniqueness of the solution follows using the standard approach via the Hartman-
Stampacchia theorem. Let Ω be p-Wiener regular at every point of its boundary. One could

prove one implication of Theorem 3.1, namely that Ωn
∞p−→ Ω implies uΩn −→ uΩ in L∞(D)

(the extension on Ωc
n is g). The γp-convergence gives straight forwardly that uΩn −→ uΩ in

W 1,p
0 (D). For the uniform convergence, the proof follows the same lines as Theorem 3.1.
The converse is not so obvious since the answer clearly depends on B. An involved study

of the dependence of the solution uΩ on B is necessary, in order to search the regions where
the solution vanishes. Without any specific hypothesis on B, the solution may vanish on
sets of positive measure and on this region the geometry of the moving domains can not be
anymore controlled.

5.4 Keldysh like stability

In [16], Keldysh introduced into the linear frame the following stability concept (the extension
is natural to the nonlinear one): Ω is called p-stable if every sequence (Ωn)n which compactly
converges to Ω do γp-converge to Ω. It is said that (Ωn)n compactly converges to Ω if

∀K ⊂⊂ Ω ∪ int(Ωc) ∃N = NK , ∀n ≥ N =⇒ K ⊆ Ωn ∪ int(Ωc
n).

Various characterizations of the stability were given in the literature; we refer the reader to
[14] and, for an approach via γp-convergence, to [4].

Into the linear frame, the stability question into the L∞-norm was raised in [3]. A
domain is called L∞-stable if every sequence of open sets which compactly converges to Ω
do ∞p-converge. A direct consequence of Theorem 3.1 is the following.

Proposition 5.6 Let Ω be p-Wiener regular at each point of its boundary. Then Ω is p-
stable if and only if is L∞-stable.

Proof If Ωn compactly converges to Ω then condition 1. of Corollary 3.7 is satisfied.
Consequently, ∞p-stability is equivalent to γp-stability. 2

Notice that domains with cracks may be p-Wiener regular at every point of the boundary,
but they are not stable in the sense of Keldysh. This means that sequences of open set
converging into the compact convergence are not necessarily ∞p-converging. Nevertheless,
∞p-convergence for such a situation can be achieved for other type of geometric convergences
(e.g. those verifying the assumptions of Proposition 4.1, or more general Theorem 3.1).
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