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Abstract. We consider the problem of minimizing the kth Dirichlet eigen-

value of planar domains with fixed perimeter and show that, as k goes to
infinity, the optimal domain converges to the ball with the same perimeter.

We also consider this problem within restricted classes of domains such as

n−polygons and tiling domains, for which we show that the optimal asymp-
totic domain is that which maximises the area for fixed perimeter within the

given family, i.e. the regular n−polygon and the regular hexagon, respectively.

1. Introduction

Consider the eigenvalue problem for the Dirichlet Laplacian given by

(1)
−∆u = λu x ∈ Ω

u = 0 x ∈ ∂Ω
,

where Ω is a bounded domain in Rn. The isoperimetric structure of low eigenvalues
of problem (1) is a classical topic in shape optimisation which may be traced back
to Rayleigh’s book The Theory of Sound [R] and, more specifically, to his conjecture
that the disk should minimise the first Dirichlet eigenvalue of the Laplacian among
domains of fixed area. This conjecture was proven by Faber [F] and Krahn [K1, K2]
in the early 1920’s and since then a lot of effort has been made to extend it to
higher eigenvalues. However, in nearly a century no progress has been made along
this direction with the minimisation of λ3 with a volume restriction still an open
problem, even in two dimensions where the minimiser has long been conjectured to
be the disk.

Furthermore, recent numerical work indicates that for eigenvalues of planar do-
mains higher than the fourth, the optimal shape under an area restriction will not
have a boundary which may be described in terms of known functions [AF1, O].
Also, the optimal domains obtained in [AF1] for the first fifteen eigenvalues suggest
that any underlying structure that one might expect there to exist, such as optimal
sets having at least Z2 symmetry, will most likely be up against some exceptions.

The above should not give the impression that no progress at all has been made.
In fact, quite the opposite is true and since the appearence of Faber’s and Krahn’s
papers much work has been done extending the theory in other directions including
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the counterparts of the classical results to other boundary conditions and higher
order operators, for instance.

This paper has at its origin two different problems which were considered in the
literature recently. The first consists in the minimisation of the kth eigenvalue of
problem (1) with a restriction on the perimeter of Ω – by perimeter of a measurable
set Ω we mean the (N − 1)−Hausdorff measure of the reduced boundary of Ω (see
[AFP, Definitions 2.46 and 3.54]); for simplicity, we shall use the generic notation
|∂Ω| for Hn−1(∂∗Ω). More precisely, we want to solve the problem

(2) λ∗k = min {λk(Ω) : Ω ⊂ Rn, |∂Ω| = α} .

As far as we are aware, this problem was first studied in [BBH], where existence
and properties of the optimal domain for the second eigenvalue were determined.
While for the first eigenvalue the solution to this problem will still be the ball, as a
consequence of the Faber-Krahn and isoperimetric inequalities, in the case of λ2 the
optimal domain in two dimensions will in fact be connected and not coincide with
the solution in the case of an area restriction. A more involved study of problem
(2) can be found in [BI] where, in particular, existence of a solution is proved in R2

and a series of qualitative properties of minimizers are given.
The second problem consists in determining the asymptotic behaviour of optimis-

ers of this type of spectral problems. Denoting by Ω∗k an optimiser of problem (2),
we are interested in knowing if the limit of this sequence of optimal domains does
in fact exist in some appropriate sense and, if so, what the limitting domain is.
Whenever such domain exists, we shall denote it by Ω∗∞. In the case of fixed area,
it was recently shown in [AF2] that the sequence of optimal rectangles converges to
the square as k goes to infinity. This problem is equivalent to determining the op-
timal ellipse which contains k integer lattice points in the first quadrant (excluding
the axes), and the result obtained implies that, asymptotically, this is achieved by
the circle. Again, we believe that this was the first time where a problem of this
type was addressed.

A crucial step in the proof of convergence of optimal rectangles to the square
in [AF2], was to show that the perimeter of the optimal sequence remained uni-
formly bounded in k. This makes it natural to consider what happens in the case
where the perimeter is uniformly bounded a priori, such as in problem (2) above.
In fact, in this case we are able to give a complete answer to this problem within
the class of general planar domains, where we show that the asymptotic optimal
domain is the disk.

Theorem 1. The sequence Ω∗k of optimal planar domains with fixed perimeter con-
verges as k goes to infinity and Ω∗∞ = D, where D denotes the disk with perimeter
α.

Remark 1.1. The geometric convergence above is understood in the sense that the
characteristic functions converge in L1, i.e.

1Ω∗
k

L1(R2)−→ 1Ω∗
k
.

Meanwhile, since in Theorem 1 the sets Ω∗k are convex, the convergence also holds
in a geometric sense, given by the Hausdorff distance dH

dH(Ω∗k,Ω
∗
∞)→ 0,
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and
dH(R2 \ Ω∗k,R2 \ Ω∗∞)→ 0.

Remark 1.2. In higher dimensions there are difficulties of different types which,
for the moment, we are not able to overcome. Firstly, it has not yet been proven
that problem (2) has a solution for k ≥ 4. Although the existence question seems
quite reasonable and several hints lead to this conclusion, one cannot yet ensure
the existence of such an optimal sequence. Moreover, convexification in dimension
greater than 2 does not necessarily decrease the perimeter of a set. This also means
that one cannot prove equi-boundedness of the suspected minimizers of problem (2).
By comparison, in the case of a measure constraint, the best bound obtained for the
diameter so far depends on k, although it is not known if it is uniformly bounded
independently of k (see [Bu, MP]). Nevertheless, in the absence of a uniform
bound on diameters, there will be a new difficulty for the construction of the limit
of solutions of (2). In particular, there may possibly be a sort of vanishing of the
sequence without any concentration part. Also, in the absence of convexity, the
argument we use below to uniformly compare the k-th eigenvalue on Ω∗k with the
k-th eigenvalue on the presumable limit is a difficult task for varying k.

It is possible to consider the same problem within other families of domains, of
which a natural case is that of polygons with n sides with the same perimeter, for
which again the set which is optimal for the geometric isoperimetric inequality in
that class is the limiting domain.

Theorem 2. Let Pn denote the family of n−sided planar polygons and consider
the minimisation problem

(3) λ∗k = min {λk(P ) : P ∈ Pn, |∂P | = α}
Then the sequence P ∗k of optimal n−polygons with fixed perimeter converges as k
goes to infinity and P ∗∞ = P regn , where P regn denotes the regular n−polygon with
perimeter α.

Remark 1.3. The geometric convergence above holds in the same way as in Remark
1.1, since the sets P ∗k are convex.

We remark that in this case, and with the exception of triangles and quadrilat-
erals, the analogue of the Faber-Krahn inequality is still open. More specifically,
the fact that the equilateral triangle (resp. the square) minimises the first Dirichlet
eigenvalue among triangles (resp. quadrilaterals) of given area was proven in [PS],
where it was also conjectured that the corresponding optimal domain among the
set of n−polygons is the regular n−polygon with the same area. The optimiser
with a perimeter restriction is not known either.

Finally, we shall consider a family of domains of a different type, namely, planar
tiling domains, still with a perimeter restriction, for which a similar type of result
may be shown.

Let Tα denote the family of planar tiling domains (open sets, not necessarily
connected) satisfying the following properties:

P1: R2 \ T is connected;
P2: min{H1(K) : Kconnected, ∂T ⊂ K} ≤ α.

Remark 1.4. The constraints P1 and P2 above ensure the existence of an optimal
tiling domain in the class Tα for problem (4) below. Clearly this includes the
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connected and simply connected tilling domains with a perimeter less than or equal
to α.

Theorem 3. Let consider the minimisation problem

(4) λ∗k = min {λk(T ) : T ∈ Tα}
Then the sequence T ∗k of optimal tiling domains with fixed perimeter converges as
k goes to infinity and T ∗∞ = P reg6 , that is, the regular hexagon with the same
perimeter.

Remark 1.5. In Theorem 3, the convergence is slightly weaker, since it holds in
the sense of characteristic functions and only the complements converge in the
Hausdorff metric

dH(R2 \ T ∗k ,R2 \ T ∗∞)→ 0.

A remark similar to that following Theorem 2 above also holds here, in that
the minimiser for the first eigenvalue of tiling domains either with fixed area or
perimeter is not known.

2. General domains

The existence of Ω∗k relies on the following convexification argument (see [BI,
Theorem 1]): if Ω is open, then there exists a convex set with lower perimeter and
lower eigenvalues. Indeed, if Ω is a union of at most k pairwise disjoint open sets
such that ∂Ω is connected, by convexification, the perimeter decreases. From the
monotonicity of eigenvalues with respect to inclusions, the new domain has no larger
eigenvalues. In the family of convex sets of prescribed perimeter, the existence of
Ω∗k is based on the compactness properties of the Hausdorff metric and the good
behaviour of the eigenvalues on moving convex sets.

For general domains in R2 we have [Be, LY]

2kπ

|Ω|
≤ λk(Ω)

which, when applied to optimal domains, yields

2kπ

|Ω∗k|
≤ λk(Ω∗k) ≤ λk(Ω) =

4kπ

|Ω|
+ o(k),

where Ω is any (fixed) domain. Dividing by k and taking lim sup throughout we
obtain

lim inf
k→+∞

|Ω∗k| ≥
1

2
|Ω|

for any planar domain Ω with perimeter α. In particular, this implies that the
sequence of optimisers cannot degenerate to a one dimensional set (of zero area)
and, if we take Ω to be the disk D with perimeter α, we obtain

|Ω∗∞| ≥
1

2
|D| = α2

8π
.

Relying on the compactness theorem of convex sets in the Hausdorff metric
(see for instance [HP, Theorem 2.4.10]), there exists a closed convex set F and a
subsequence (of translations of) Ω∗kl converging in the Hausdorff metric to F . From
the arguments above, the interior of the set F is non-empty. If we denote it by Ω∗∞,
we notice that the perimeter and the measure of Ω∗∞ are limits of the corresponding
quantities associated to Ω∗kl .
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We thus have that, for all positive δ there exists m = m(δ) such that, for all k
greater than or equal to m(δ), Ω∗kl ⊂ Ω∗∞ + Bδ, where Bδ is a disk of radius δ. In
other words, for sufficiently large l, depending on δ, all optimal domains will be in
a δ−neighbourhood of the limitting optimal domain Ω∗∞ (modulus a rigid planar
motion). We thus have

(5) λkl(Ω
∗
∞ +Bδ) ≤ λkl(Ω∗kl) ≤ λkl(D),

where the first inequality follows from the inclusion above. Dividing by kl and
taking limits as l goes to infinity yields

4π

|Ω∗∞ +Dδ|
≤ 4π

|D|
.

Since we may take δ to be arbitrarily small, it follows that |D| ≤ |Ω∗∞| and, by the
geometric isoperimetric inequality, Ω∗∞ must be the disk D.

The argument above shows only that the subseqence (Ω∗kl)l converges to the disk.
As the limit is independent on the choice of the subsequence, we conclude that the
full sequence (Ω∗k)k converges to the disk.

3. n−polygons

The proof follows the main lines of the case of general domains. Let us first
discuss the existence of P ∗k in (3). We begin by introducing the quantity

(6) c∗k = min {λk(P ) : ∃ l = 3, .., n, P ∈ Pl, |∂P | ≤ α} .

Clearly, for every P ∈ Pn its convexification convP belongs to the set above, so
that from the monotonicity of eigenvalues with respect to inclusions,

λ∗k ≥ c∗k.

The existence of a minimizer P ∗ in (6) follows by the compactness of the family of
polygons with the number of edges less than or equal to k in the Hausdorff metric
and the good behavior of the eigenvalues for convergence of convex sets.

The fact that P ∗ belongs to Pn comes from its optimality. If the number of sides
was less than n, then cutting a vertex and introducing a new small edge of size ε
would decrease the perimeter with an equivalent of ε and increase the eigenvalue
with o(ε2). Finally, the perimeter constraint is satisfied, otherwise one can dilate
the optimal domain.

Consequently, λ∗k = c∗k and the minimizer P ∗ is convex, belongs to Pn and
satisfies the perimeter constraint. For the rest of the proof, one now follows the
same steps as for the general case above.

4. Tiling domains

The first natural question is the existence of T ∗k for which in (4) we have λk(T ∗k ) =
λ∗k. First of all, the competing tiling domains in Tα have a diameter less than or
equal to α. Thus, taking a minimizing sequence (Tn)n in (4), by the compactness
of the Hausdorff metric, there exists an open set T such that (possibly extracting
a subsequence and making translations) we have that

R2 \ Tn
H−→ R2 \ T.
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Relying on the properties of the Hausdorff convergence, we get in the limit a tiling
domain T ∈ Tα for which 1Tn converges in L1 to 1T , and in particular

|T | = lim
n→+∞

|Tn|.

The L1 convergence above is a consequence of the uniform bound on the perimeter
in the sense stated by hypothesis P2 above.

Moreover, since R2 \ Tn are connected, by Sverak’s [S] result one gets that

λ∗k = λk(T ) = lim
n→+∞

λk(Tn),

in particular this means that |T | > 0, thus we can set T := T ∗k .
In the case of tiling domains, Pólya’s inequalty yields that for any domain T in

T the kth eigenvalue satisfies
4kπ

|T |
≤ λk(T ).

Thus if in this case we proceed as in the previous sections we obtain directly

lim inf
k→+∞

|T ∗k | ≥ |T |.

From [H] we know that among all tiling domains with fixed perimeter the one with
the largest area is the regular hexagon. By taking in the above inequality T to be
the regular hexagon with perimeter α the result follows.

Note that the argument above is definitely different from the case of general do-
mains or polygons. While in those situations, the convexity of the optimal domains
was crucial for comparing the k-th eigenvalue on the k-th optimal domain and the
k-th eigenvalue on the limit domain, for tiling domains, this comparison is difficult
since no a priori information is known on the geometries. Simply connectedness is
not enough to get uniform comparisons similar to (5) and the main point here is
Pólya’s inequalty together with Weyl’s asymptotic formula.
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[P] G. Pólya, On the eigenvalues of vibrating membranes, Proc. London Math. Soc. 11 (1961),
419–433.
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